CENTRAL UNIVERSITY OF PUNJAB

Master of Science in Human Genetics

Batch - 2022

Department of Human Genetics and Molecular Medicine

Graduate attributes

The graduates of the Master of Science in Human Genetics will acquire the following:

Context of Society

The students of this course will understand the significant role of human genetics/genomics, human cytogenetics, pharmacogenomics, nutrigenomics, therapies for genetic diseases and cell and molecular biology play in the broader societal context. There will be an understanding of the basics of professional ethics, research ethics, biosafety issues, and the principles of professional practice.

Enterprising and Knowledgeable

The course content will develop skills in human genetics, molecular biology, and bioinformatics through the subject content across a broad range of modules among the students. The development of skills in human genetics will enhance employability in the field of human genetics on account of their inclusion in clinical practice. The emphasis is on student-centric learning where they solve the patterns of inheritance by drawing pedigrees and discuss the current therapeutic interventions to treat specific genetic disorders.

Digital and research methodology-based skills

The students will be able to study and learn the effective use of digital tools to support academic writing, reference management and independent study using digital resources and learning materials. The understanding of the principles of experimental design and methods will help the students to explore human genetics relevant research areas.

Course Structure of the Programme

	Core Subjects	Elective Courses			Foundation	Total Credit	
	Subjects	DE	ID	SB	CF	EF/VB	orean
Sem-I	03 (9 Cr)	01 (3 Cr)	01 (2 Cr)	03 (3 Cr)	01 (3 Cr)		20
Sem-II	04 (12 Cr)	01 (3 Cr)		02 (4 Cr)	01 (3 Cr)	01 (2 Cr)	24
SEM- III	03 (9 Cr)	01 (3 Cr)		01 (3 Cr) 01 (4 Cr Dissertation)	01 (2 Cr) 01 (1 Cr)		22
SEM- IV				01 (20 Cr Dissertation)			20
Credit Score	30	9	02	34	9	02	86

Total Credit: 86

DE: Discipline Elective

ID: Interdisciplinary

SB: Skill based (Practicals); Dissertation

CF: Compulsory foundation

EF: Elective Foundation

VB: Value Based

Semester-I

Course	Course Title Course Type		J	Hour	S	Credit
Code			L	Т	Р	
MME.506	Cell Biology	Core	3	0	0	3
HGE.507	Concepts of Genetics	Core	3	0	0	3
HGE.508	Basic and Clinical Biochemistry	Core	3	0	0	3
HGE.509	Biostatistics and Research Methodology	Compulsory Foundation	3	0	0	3
HGE.510	Concepts of Genetics (Practical)	Skill based	0	0	2	1
HGE.511	Basic and Clinical Biochemistry (Practical)	Skill based	0	0	2	1
HGE.512	Biostatistics and Research Methodology (Practical)	Skill based	0	0	2	1
	Discipline Elective Course	-I (Any one of the followin	ng)			
HGE.515	Population Genetics and Genetic Epidemiology	DE	3	0	0	3
MME.515	Molecular and Cellular Oncology	DE	3	0	0	3
ZOL.525	Nanobiology	DE	3	0	0	3
BIM.511	Protein Engineering	DE	3	0	0	3
	Interdisciplinary Course	-I (For other Departments	s)			
HGE.518	Introduction to Intellectual Property Rights	IDC	2	0	0	2
XXX.	Choose from IDC courses offered by other Departments	IDC	2	0	0	2
]	[otal	Cre	dits	20

Semester-II

Course	Course Title	Course Type	Hours		Credit	
Code			L	Т	Р	
HGE.521	Human Cytogenetics and Human Biochemical Genetics	Core	3	0	0	3
MME.522	Essentials of Immunology	Core	3	0	0	3
HGE.523	Advanced Techniques in Human Genetics	Core	3	0	0	3
HGE.524	Human Anatomy and Physiology	Core	3	0	0	3
MME.525	Essentials of Immunology (Practical)	Skill Based	0	0	2	1
HGE.526	Clinical Genetics (Practical)	Skill Based	0	0	6	3
MME.528	Molecular Biology	Compulsory Foundation	3	0	0	3
HGE.529	Principles of Ecological Science	Value based	2	0	0	2
XXX	Value Added Course (From other departments)	VAC	2	0	0	2
	Discipline Elective Course-	II (Any one of the followin	ng)		•	
HGE.527	Human Embryology and Developmental Genetics	DE	3	0	0	3
MME.527	Stem Cell and Regenerative Medicine	DE	3	0	0	3
MIC.525	Microbial Pathogenicity	DE	3	0	0	3
ZOL.553	Vascular Biology	DE	3	0	0	3
BIM.521	Big Data Analysis in Bioinformatics and Healthcare	DE	3	0	0	3
ZOL.554	Neurobiology and Degenerative Pathophysiology	DE	3	0	0	3
Total credits						24

Semester-III

Course Code	Course Title	Course Type		Hours		Credit
Couc			L	Т	Р	
HGE.551	Pharmacogenomics and Nutrigenomics	Core	3	0	0	3
HGE.552	Genetic Diseases and Therapies	Core	3	0	0	3
HGE.553	Recombinant DNA technology and therapeutics	Core	3	0	0	3
MME.554	Tools in Bioinformatics (Practical)	Skill Based	0	0	6	3
	Discipline Elective Course	e-III (Any one of	the foll	lowing)		
HGE.555	Biosafety, Bioethics and Intellectual Property Rights	DE	3	0	0	3
MME.555	Evolution and Developmental Biology	DE	3	0	0	3
	Founda	tion Courses				
MME.557	Concepts of Bioinformatics	Discipline Enrichment	2	0	0	2
HGE.558	Innovation and Entrepreneurship	Compulsory Foundation	1	0	0	1
HGE.600	Dissertation Part-I	Skill Based	0	0	8	4
		Total Credits				22

Semester-IV

Course	Course Title	Course Type	Hours		Credit	
Code			L	Т	Р	
HGE.601	Dissertation Part-II	Skill Based	0	0	40	20
	Total		0	0	0	20

MOOC Options: 40% credits can be obtained through MOOCs depending on availability of course with matching content.

Semester – I

Course Code:	MME.506
Course Title:	Cell Biology
Total Hours:	45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understanding structures and functions of various cellular organelles.

CLO2: Conceptualization of basic cellular mechanisms.

CLO3: Conceptualize the mechanisms of inter- as well as intra-cellular communications.

CLO4: Understanding the cell cycle regulation and its importance in disease biology

Unit 1 12 Hours Introduction to the cell: Models of membrane structure, Membrane proteins, Membrane carbohydrates, Membrane transport of small molecules, Membrane transport of macromolecules and particles. Structural organization and function of intracellular organelles: The lysosomes, Ribosomes, The peroxisomes, The Golgi apparatus, The endoplasmic reticulum, Mitochondria.	CL01
Unit 210 HoursProtein secretion and sorting: Protein secretion, synthesis and targeting to mitochondria, chloroplast, peroxisomal proteins, translational modification in the ER. Intracellular traffic, vesicular traffic in the secretary pathway, protein sorting in the Golgi bodies, traffic in the endocytic pathway, exocytosisUnit 314 HoursThe cytoskeleton: The nature of cytoskeleton, Intermediate filaments, Microtubules, Actin filaments, Cilia and centrioles, Organization of the cytoskeleton. Cell communication and cell signaling: Cell adhesions, Cell junctions and the extra cellular matrix, Cell-cell adhesion and communication, Cell matrix adhesion, Collagen the fibrous protein of the matrix, Non-collagen component of the extra cellular matrix	CLO2 CLO3
Unit 49 HoursCell growth and division: Overview of the cell cycle and its control, molecular mechanisms for regulating mitotic and meiotic events, Amitosis, Cell cycle control, Checkpoints in cell cycle regulation.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations, and discussions.

- 1. Alberts, B., Bray, D., Lews, J., Raff, M., Roberts, K. and Watson, J.D. (2010). Molecular Biology of the cell. Garland publishers, Oxford.
- 2. Celis, J.E. (2006). Cell biology: A laboratory handbook, Vol 1, 2, 3. Academic Press, UK.
- 3. Gupta, P.K. (2008). Cytology, Genetics and Evolution. Rastogi publications, Meerut, India.
- 4. Karp, G. (2010). Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. Inc. New Delhi, India.

Course Code:	HGE.507
Course Title:	Concepts of Genetics
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Evaluate the Mendelian and Non-Mendelian inheritance patterns. Gather knowledge about gene expression regulation and sex determination,

CLO2: Evaluate different chromosomal aberrations and ploidies

CLO3: Know about genetic system of microbes

CLO4: Know the details of extra chromosomal inheritance patterns

UNIT I	CLO1
11 Hours	
Transmission Genetics: Mendel's laws of inheritance and its applications; concept of	
segregation, independent assortment and dominance; pedigree analysis; epistasis; crossing	
over and recombination; gene linkage and genetic mapping	
Sex determination: Sex determination in Human and Drosophila; X-chromosome	
inactivation; dosage compensation.	
UNIT II 12 Hours	CLO2
Chromosomal Mutations : Chromosomal aberrations: structural and numerical; evolutionary	
history of bread wheat; aneuploids-nullisomics, monosomics, and trisomics; somatic	
aneuploids; changes in chromosome structure; properties of chromosomes for detection of	
structural changes; mutations and it's types; complementation and recombination;	
transposable elements in Pro- and Eukaryotes.	
Genes and genome dynamics: Fine structure of gene; and analysis, Benzer's experiments.	
UNIT III 11 Hours	CLO3
Microbial Genetics: Genetic systems of Viruses and Bacteria; genetic analysis and mapping	
in Bacteria and Bacteriophages – conjugation, transformation and transduction;	
recombination and gene mapping; evolution of microbial genome.	
UNIT IV 11 Hours	CLO4
Extra-chromosomal inheritance: Chloroplast: variegation in Four O' Clock plants;	
mutations in Chlamydomonas; mitochondrial inheritance: poky in neurospora, petites in	
yeast; molecular organization and gene products of chloroplast and mitochondrial DNA;	
infectious heredity: Kappa in <i>Paramecium</i> : Infective particles in <i>Drosophila</i> ; endosymbiont	
theory.	

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Report on novel chromosome aberrations in human, Discussion on transposable elements in human diseases, Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Karyotype analysis presentations and discussions.

Suggested Readings:

 $\overline{}$

- 1. Klug WS and Cummings MR. Concepts of Genetics. Prentice-Hall.2014
- 2. Anthony, J.F. Miller, J.A. Suzuki, D.T., Richard, R.C., Gilbert, W.M. (1998). An introduction to Genetic Analysis. W.H. Freeman publication, USA.
- 3. Pierce BA. Genetics: A Conceptual approach. Freeman Publishers.
- 4. Hartle DL and Jones EW. Genetics: Analysis of Genes and Genomes. Jones & Bartett.
- 5. Atherly, A.G., Girton, J.R., Mcdonald, J.F. (1999). The Science of Genetics. Saundern College publication.
- 6. Snusted, D.P., Simmons, M. J. (2010). Principles of Genetics. John Wiley & Sons, New
- 7. Griffith AF et al. An Introduction to Genetic Analysis. John Wiley & Sons.

HGE.508

Course Code:	
Course Title:	Basic and Clinical Biochemistry
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Study the importance of maintenance of pH, role of vitamins and minerals in metabolic processes.

CLO2: Compare the basic structural features of biomolecules namely carbohydrates, lipids, proteins, and vitamins.

CLO3: Elaborate the structure, and functions of proteins, and metabolism of nucleic acids. CLO4: Conceptualize the basic features of enzyme, its regulation and kinetics of enzyme catalysed reactions.

UNIT I 11 Hours Clinical Biochemistry: Properties of water, Ionization of water, weak acids and weak bases, pH and buffers. Water and sodium balance, Interpretation of biochemical tests, Composition of blood, urine and cerebrospinal fluids, Vitamins and trace elements disorders. Liver and kidney function tests, Jaundice, diabetes mellitus, hypoglycemia, hypertension.	CLO1
UNIT II 11 Hours Carbohydrate Metabolism: Classification and functions, Epimers; Anomers; Mutarotation. Reactions of carbohydrates; General scheme of metabolism. Basic concepts, Glycolysis, Krebs cycle, Pentose phosphate pathway, Gluconeogenesis, Regulation of carbohydrate metabolism. Inborn errors of carbohydrate metabolism	CLO2

Lipids: Classification and functions, Beta oxidation - Pathway and regulation. Role	
of acyl carnitine in fatty acyl transport. Cholesterol synthesis. Ketone bodies-	
Formation and utilization. Clinical features and laboratory findings in disorders of	
triglyceride, lipoprotein and cholesterol metabolism.	
UNIT III 11 Hours	
Proteins: Structure and function of proteins, Secondary, Tertiary and Quaternary	
structure, super secondary structures, Ramachandran plot. Oxygen binding proteins	CLO3
– Hemoglobin and myoglobin.	CLUS
Nucleic Acids: Structure and functions, Nucleosides and nucleotides. Metabolism of	
purines and pyrimidines- Salvage and de novo pathways.	
UNIT IV 12 Hours	
Enzymes: Definition, Classifications and nomenclature, prosthetic groups, cofactors,	
Mechanism of enzyme action and properties of enzymes; Enzyme activity, Factors	
affecting rate of enzyme catalyzed reactions: pH, temperature, etc. ES complex	CLO4
formation; Michaelis-Menten equation; Determination of Km and Vmax and its	
significance; Turnover number; Enzyme inhibition: reversible and irreversible	
inhibition. Isoenzymes, catalytic antibodies, multienzyme complexes and ribozymes.	
Transactional Madage Lectures Tytorials Virtual alagonames Lecture and dam	onstration

Transactional Modes: Lecture; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning; Google Class; Microsoft teams; YouTube demonstrations etc.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations, and discussions.

- 1. Berg, J.M., Tymoczko, J.L., Gatto Jr, J.R., Stryer, L. (2015) Biochemistry Eighth Edition, 2015, W.H. Freeman & Company. USA.
- 2. Brown, T.A. (2016). Gene Cloning and DNA Analysis: An Introduction, 7th Edition January 2016, Blackwell Publishing Professional. USA.
- 3. Nelson, D.L., Cox, M.M. (2017). Lehninger Principles of Biochemistry. Seventh Edition 2017
- 4. Donald Voet, Charlotte W. Pratt, Judith G. Voet (2012) Principles of Biochemistry, International Student Version. John Wiley & Sons, Publisher
- 5. Swaminathan, R. (2011). Handbook of clinical biochemistry. 2nd edition, World Scientific Publishing Company, New Jersey, USA
- 6. Palmer, T., Bonner, P.L. (2007) Enzymes: biochemistry, biotechnology and clinical chemistry. Woodhead Publishing Limited.
- 7. Price, N.C., Stevens, L. (2003) Fundamentals of enzymology: The cell and molecular biology of catalytic proteins. Oxford University Press, USA.
- 8. Swaminathan, R (2011) Handbook of Clinical Biochemistry, 2nd Edition, Publisher: World Scientific
- 9. Murphy M.J., Srivastava R., Deans, K. (2018) Clinical Biochemistry, 6th Edition. Elsevier's USA.
- 10. Devlin, T.M. (2010) Textbook of Biochemistry with clinical correlation. John Wiley and Sons Publishers.

Course Code:	HGE.509
Course Title:	Biostatistics and Research Methodology
Total Hours:	45

L	Τ	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Analyze and evaluate wide variety of statistical data

CLO2: Compose statistical data and summary statistics in graphical and tabular forms. Perform biological sampling and statistical analysis.

CLO3: Apply suitable statistical tools to analyze data

CLO4: Write and communicate scientific reports, projects, and publications.

UNIT I	CLO1
Hours: 11	
Overview of Biostatistics: Basic concepts of statistical data and different types of	
tables; graphical representation of experimental data for publication; frequency distribution; measurement of central tendency and variation.	
UNIT II Hours:	CLO2
11	
Experimental design and analysis: Basics of sampling in biological studies; different	
types of sampling techniques; various steps in sampling; concept of data distribution	
in sampling; graphical representation of data; level of significance; hypothesis testing.	
UNIT III Hours: 11	CLO3
Inferential Statistics: Chi-Square test: hypothesis testing, contingency, homogeneity;	
student's t-test: paired and unpaired, one tailed and two tailed; one-way and two-way	
analysis of variance (ANOVA); correlation and regression.	
UNIT IV Hours: 12	CLO4
Study design & Technical writing: Best practices in research and technicality of	
research design; interpretation and report writing, e-Library; web-based literature	
search engines; evaluation-based development of scientific writing skill: synopsis,	
research paper, poster preparation and paper presentation and dissertation.	

Transactional Modes: Lecture; Tutorial; Virtual classroom, Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, student generated questions, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper.

- 1. Rao, S.P.S.S. Richard, J. (2016). Introduction to biostatistics and research methods. 5th Ed. Phi Learning Pvt. Ltd. New Delhi.
- 2. Hoffman, J. (2015). Biostatistics for medical and biomedical practioners. 1st Ed. Academic Press, London.
- 3. Banerjee P.K (2014). Introduction to Biostatistics. S.Chand, New Delhi.

- 4. Antonisamy, B. Christopher, S. Samuel, P.P. (2011). Biostatistics: Principles and Practice. Tata McGraw Hill. New Delhi.
- 5. Daniel W.W (2011). Biostatistics: Basic Concepts and methodology for the health sciences. 9th Ed. John Wiley and Sons Inc, New Delhi.
- 6. Norman, G. and Streiner, D. (2008). Biostatistics: The Bare Essentials. (with SPSS), 3rd Edition, Decker Inc. USA.
- 7. Sokal, R.R. and Rohlf, F.J. (1994). Biometry: The Principles and Practices of Statistics in Biological Research. W.H. Freeman publishers, USA.

Course Code:	HGE.510
Course Title:	Concepts of Genetics (Practical)
Total Hours:	30

L	Т	Р	С
0	0	2	1

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Perform any experiments on Mendelian genetics and pedigree analysis
- 2. Perform linkage based genetic analysis
- 3. Design genetic experiments using common model organisms
- 4. Isolate genomic DNA for genetic analyses

List of Practical work:

1	Problems on Monohybrid and dihybrid ratios, Multiple alleles, Epistasis	CLO1
2	Inheritance patterns in Human– Numerical on Pedigree analysis- Autosomal	
	patterns, X–linked patterns, Y–linked patterns	
3	Segregation analysis in Drosophila (Monohybrid, Dihybrid)	
4	Analysis on Linkage	CLO2
5	Linkage mapping	
6	Identification of inactivated X chromosome as Barr body	CLO3
7	Studies of a Model organism: E. coli, C.elegans, D. melanogaster and D. rerio	
8	Isolation of genomic DNA and quality control	CLO4

Transactional Modes: Hands-on practicals; Demonstration; Virtual classrooms; Tutorial; Selfdirected learning.

Evaluation criteria for practical courses:

• Continuous Assessment = **60 Marks**

Based on performance of the students and completion of the record book (60 divided by the number of practicals)

• Final Examination = **40 Marks** Subjective question = **10 Marks** Performing experiment = 20 Marks Viva voce = 10 Marks

Course Code: HGE.511

L	Т	Р	С
---	---	---	---

Course Title:	Basic and Clinical Biochemistry (Practical)	0	0	4	
Total Hours:	60				

2

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Prepare buffers and solutions with varied concentration.
- 2. Quantitative estimation of biomolecules and their role in health and disease
- 3. Understand the impact of various factors affecting enzyme activity
- 4. Importance of Clinical tests in health and disease.

List of Practicals

1. Preparation of Buffers	CLO1
2. Extraction of DNA, and purity check by electrophoresis.	CLO2
3. Quantitative estimation of Glucose, Cholesterol and Proteins	CLO2
4. Assay of enzyme activity in saliva.	CLO3
5. Effect of temperature on enzyme activity.	
6. Effect of pH on enzyme activity.	
7. Liver function tests-SGOT and SGPT	CLO4
8. Determination of urea	

Transactional Modes: Hands-on Practicals; Demonstration; Virtual classrooms; Tutorial; Self-learning.

Internal assessment shall be through any of the following: Lab performance, Open book techniques, Notebook writing, presentations, and group discussions.

Suggested Readings:

- 1. Rajendran, S., Dhiman, P. (2019) Biochemistry Practical Manual. Elsevier India.
- 2. Plummer, D. (2004) An Introduction to Practical Biochemistry. Tata McGraw Hill Publishers Co. Ltd., India
- 3. Gupta, P.P., Gupta, N. (2017) Essentials of Practical Biochemistry. Jaypee Brothers Medical Publishers Pvt. Ltd. India.
- 4. Hofmann, A., Clokie, S. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. Cambridge University Press, USA
- 5. Murphy M.J., Srivastava R., Deans, K. (2018) Clinical Biochemistry, 6th Edition. Elsevier's USA.
- 6. Swaminathan, R (2011) Handbook of Clinical Biochemistry, 2nd Edition, Publisher: World Scientific

Evaluation criteria for practical courses:

• Continuous Assessment = **60 Marks**

Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practicals)

• Final Examination = **40 Marks**

Subjective question = 10 Marks Performing experiment = 20 Marks Viva voce = 10 Marks

Course Code:	HGE.512
Course Title:	Biostatistics and Research Methodology (Practical)
Total Hours:	30

L	Τ	Р	С
0	0	2	1

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Identify statistical data type and plot graphs using conventional tools. Perform basic statistics to check the data quality

CLO2: Test correlation and regression using two or more variables

CLO3: Perform standard parametric and non-parametric statistics on simple data

CLO4: Write and communicate scientific literatures

List of Practical work:

1	Plotting different types of graphs and statistical tables using MS excel, GraphPad and/or relevant tools	CLO1
2	Plotting normal distribution from data given	
3	Problems on central tendency, measurement of variance (standard deviation, standard error etc.)	
4	Problems of correlation	CLO2
5	Problems of regression	
6	Chi-square test	CLO3
7	Student's t-test	
8	Analysis of variance (ANOVA)	
9	Different techniques of sampling	
10	Scientific writing skill development	CLO4
11	Practice writing research reports, synopsis, poster etc.	

Transactional Modes: Laboratory based practicals; demonstration, Problem solving; Self-learning.

Evaluation criteria for practical courses:

• Continuous Assessment = **60 Marks**

Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practicals)

- Final Examination = **40 Marks**
 - i. Subjective question = 10 Marks
 - ii. Performing experiment = 20 Marks

iii. Viva voce = 10 Marks

Discipline Elective-I

Course Code:	HGE.515
Course Title:	Population Genetics and Genetic Epidemiology
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Conceptualize the basic concepts in population genetics and apply statistics relevant to the study of genomic diversity

CLO2: Examine the major genetic and ecological processes underlying evolution and explain the process driving speciation

CLO3: Perform different epidemiological studies to identify the cause-effect relationship in variety of human traits/diseases

CLO4: Design genetic studies and perform association and linkage analysis on any relevant data.

UNIT I 11	CLO1
Hours	
Population dynamics and basics of epidemiology: Dynamics and conditions of the	
Hardy-Weinberg law; selection coefficient and fitness; heterozygous advantages;	
inbreeding and its consequences; mutation pressure and estimation of rates; genetic	
load; dynamics of migration and genetic drifts.	
UNIT II 11 Hours	CLO2
Evolution and Speciation: Emergence of evolutionary thoughts Lamarck; Darwinism	
- concepts of variation, adaptation, struggle, fitness and natural selection; Mendelism;	
spontaneity of mutations; the evolutionary synthesis; Mechanism of evolution:	
Adaptive radiation; isolating mechanisms; speciation; allopatricity and sympatricity;	
convergent evolution; sexual selection; co-evolution; Evolution of Homo sapiens	
UNIT III 11 Hours	CLO3
Fundamentals of epidemiological studies: Different types of Experimental and	
observational studies; basic parameters of epidemiology: frequency, occurrence,	
prevalence, incidence; association; causation, variation; Association studies: candidate	
gene association and genome-wide association studies (GWAS); systematic review	
and meta-analysis.	
UNIT IV 11 Hours	CLO4
Genetic variation and complex trait inheritance: Basics of genetic variations; genetic	
markers – SNP, CNV, Ins/dels, VNTR, STR, microsatellite; concepts of tag markers	
and haplotypes, linkage disequilibrium; quantitative genetic analysis; QTL and eQTL.	
Transactional Modes: Lecture; Demonstration; Tutorial; Case study; Virtual classical	ssrooms;

seminar presentation; Problem solving; Self-learning.

Internal assessment shall be through any of the following:

Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions and presentations.

Suggested Readings:

- 1. Bhasker, H.V. and Kumar S (2008). Genetics. Campus Books International, New Delhi, India.
- 2. Cavalli-Sforza, L.L. and Bodmer, W.F. (2013). The Genetics of Human Populations. Dover Publications.
- 3. Hamilton M.B. (2009). Population Genetics. Wiley-Blackwell, UK.
- 4. Hedrick P.W.(2011). Genetics of Populations. Jones and Bartlett Publishers, Massachusetts.
- 5. Jobling, M., Hollox, E., Hurles, M., Kivisild, T. and Tyler-Smith, C. (2013). Human Evolutionary Genetics. Garland Science.
- 6. Knight, J.C. (2009). Human Genetic Diversity –Functional consequences for Health and Disease. Oxford University Press, USA.
- 7. Krebs, J.E, Goldstein, E.S. and Kilpatrick, S.T. (2013) Lewin's Essential Genes. Jones and Bartlett learning, USA.
- 8. Nielsen, R. and Slatkin, M. (2013). An Introduction to Population Genetics: Theory and Applications. Sinauer Associates, Inc.
- 9. Relethford, J.H. (2012). Human Population Genetics. John Wiley & Sons.
- 10. Snusted, D.P., Simmons, M. J. (2010). Principles of Genetics. John Wiley & Sons, New York.
- 11. Palmer LJ, Burton PR & Smith GD (2011). An introduction to genetic epidemiology (Policy Press, University of Bristol)
- 12. Dawn TM (2011). Genetic Epidemiology (Springer)
- Austin M (2013). Genetic Epidemiology: Methods and Applications, 1st Edition (CABI Publishing).

Course Code:	MME.515
Course Title:	Molecular and Cellular Oncology
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand fundamentals of cancer.

CLO2: Gain knowledge about genetics and signal transduction involved in tumorigenesis.

CLO3: Learn about various tools used for diagnostic purposes.

CLO4: Understand basics principles of anticancer therapeutics as well as about recent developments of the field.

Unit: 1	13 Hours	CLO1
Fundamentals and Genetics of Cancer: Hallmarks of cancer, cancer	classification,	
Mutagens, carcinogens and gene mutations, Chromosomal aberrations,	tumor viruses	

and discovery of oncogenes, tumor suppressors and oncogenes, familial cancer	
syndromes, telomere regulation in cancer.	
Unit: 2 11 Hours	CLO2
Signal Transduction in Cancer Progression: Deregulation of Cell cycle in cancer. Cell	
signaling in cancer; cancer metabolism; hypoxia and metastasis, angiogenesis, tumor	
microenvironment. DNA damage and repair defects and their relation to cancer, cancer	
stem cells.	
Unit: 3 11 Hours	CLO3
Cancer Detection: General and organ specific symptoms associated with cancer,	
techniques for cancer detection, biomarkers for cancer detection of various stages of	
cancer, In-vitro assays to detect angiogenesis, metastasis, cell proliferation, mice	
models to study cancer (transgenic, knock-out, knock-in, xenografts and patient derived	
xenografts), genomic and proteomic approaches to develop better cancer markers.	
Unit: 4 10 Hours	CLO4
Cancer Therapies and Recent Advances in Cancer Research: Traditional	
Chemotherapies, radiotherapy, Onco-surgery, Bone marrow transplantation, stem cell	
therapies, Immunotherapy, combinational therapies, natural products as therapeutics,	
cancer vaccines, gene therapies, targeted anticancer therapies, CAR T and other new	
anticancer therapies.	
Transactional Modes: Lastura: Demonstration: Tutorial: Lastura our demonstration	Duchlon

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, case analysis, simulated problem solving, classroom assignments, term paper, presentations and discussions.

Suggested Reading:

- 1. DeVita, V. T., Rosenberg, S. A., & Lawrence, T. S. (2018). DeVita, Hellman, and Rosenberg's cancer. Lippincott Williams & Wilkins.
- 2. Enders, G. H. (2010). Cell cycle deregulation in cancer. Humana Press, Springer science, New York.
- 3. Gusev, Y. (2019). Micro RNA Profiling in Cancer. Pan Standford publishing pvt.Ltd., Singapore.
- 4. Hiem, S., & Mitelman, F. (2019). Cancer Cytogenetics. IIIrd edition. Willey-Blackwell publishing, New Jersey.
- 5. Jocelyn, E. K., Elliot, S. G., Stephen, T. K. (2018). Lewin's Gene X. Jones & Barlett.
- 6. Wang, E. (2018). Cancer systems biology. CRC press, Taylor & Francis group, New York.
- 7. Weinberg, Robert A. (2015). The Biology of Cancer. New York: Garland Science

Related Weblink

http://www.insidecancer.org/ http://www.who.int/cancer/en/ http://www.cancer.gov/ http://www.icmr.nic.in/ncrp/cancer_reg.htm

Interdisciplinary Courses

Course Code:	HGE.518
Course Title:	Introduction to Intellectual Property Rights
Total Hours:	30

L	, '	Т	P	С
2	(0	0	2

Course Learning Outcomes:

On successful completion of the course the student will be able to: CLO1: Understand the concept and genesis of IP CLO2: Differentiate between plagiarism and fair use of copyright material CLO3: Understand the Patent regime of India CLO4: Conceptualize the other forms of IP namely Trademark, Industrial Design, Trade Secret, New varieties of plant

UNIT I 8 Hours	CLO1
Brief history, current status and career opportunities in IP	
Introduction to IP, Genesis and development of concept of IPR; WIPO administered	
Treaties: Paris Convention, 1883, the Berne Convention, 1886, the TRIPS Agreement,	
1994; the WIPO Convention, 1967; National Innovation and Startup Policy for	
Students and Faculty 2019, Career Opportunities in IP.	
UNIT II 6 Hours	CLO2
Copyright and Layout Design Protection	
Copyright and related rights; Plagiarism; Fair Use of copyright material; Layout	
Design Protection.	
UNIT III 8 Hours	CLO3
Patent Regime in India:	
Patents, patentability of inventions; non-patentable subject matter, Patent registration	
•	
Patents, patentability of inventions; non-patentable subject matter, Patent registration	
Patents, patentability of inventions; non-patentable subject matter, Patent registration procedure in India; Protection of Traditional Knowledge, Assignment and license of	
Patents, patentability of inventions; non-patentable subject matter, Patent registration procedure in India; Protection of Traditional Knowledge, Assignment and license of patented technology; Patent filing routes for other countries: Convention Application	CLO4
Patents, patentability of inventions; non-patentable subject matter, Patent registration procedure in India; Protection of Traditional Knowledge, Assignment and license of patented technology; Patent filing routes for other countries: Convention Application and Patent Cooperation Treaty (PCT) application.	CLO4
Patents, patentability of inventions; non-patentable subject matter, Patent registration procedure in India; Protection of Traditional Knowledge, Assignment and license of patented technology; Patent filing routes for other countries: Convention Application and Patent Cooperation Treaty (PCT) application. UNIT IV 8 Hours	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning, Class activity based

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, term paper, Seminars.

Suggested Readings:

1. Dutfield G. (2003). Intellectual Property Rights and the Life Science Industries: A Twentieth Century History (Globalization and Law). Routledge.

- 2. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge.
- 3. Khor M. (2002). Intellectual Property, Biodiversity and Sustainable Development: Resolving the Difficult Issues. Zed Books limited.
- 4. Ahuja, V.K. (2017). Law relating to Intellectual Property Rights. LexisNexis, India. 3rd Edition.
- 5. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge, USA.
- 6. Neeraj, P. and Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.
- 7. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

Weblinks:

- 1. World Intellectual Property Organization (<u>https://www.wipo.int/about-ip/en/</u>)
- 2. Office of the Controller General of Patents, Designs & Trademarks (<u>http://www.ipindia.nic.in/</u>)

Semester – II

Course Code:	HGE.521	L	Τ	P	C
Course Title:	Human Cytogenetics and Human Biochemical Genetics	3	0	0	3
Total Hours:	45				

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Know about structure of chromosomes and chromatin model,

CLO2: Apply classical cytogenetic and molecular cytogenetic techniques for the identification of individual chromosomes and various chromosomal disorders,

CLO3: Describe biochemistry and genetics of various blood group types,

CLO4: Distinguish different disorders caused due to abnormal variants of hemoglobin, lysosomal enzymes, lipids and DNA nitrogenous bases.

UNIT I 11 Hours	CLO1
General features of Human Chromosome and Chromosome staining: Chromatin structure; nucleosome model; constitutive and facultative heterochromatin; centromeres, Telomere and its maintenance; nuclear organization region (NOR); chromosome nomenclature; sister chromatid exchanges (SCE); mosaicism; structure of human X and Y chromosome; ring chromosomes; human artificial chromosome.	

UNIT II 12 Hours Cytogenetic and Molecular Cytogenetic Techniques: Methods of Chromosome preparation; chromosome banding techniques: G banding, Q banding, R banding and C banding; fluorescent in situ hybridization (FISH); different types of FISH probes: centromeric probes, chromosome specific probes and telomeric probes; reverse painting; flow cytometry; comparative genomic hybridization (CGH) mapping technique, whole chromosome painting; spectral karyotyping (SKY).	CLO2
UNIT III 11 Hours The concept of Biochemical Polymorphism: Concept of enzyme and protein polymorphism; molecular structure; Blood Group system: Biosynthesis and genetics of the ABH antigens; Rh antigens and MN antigens; quantitative and qualitative hemoglobin variants and its clinical affects	CLO3
UNIT IV 11 Hours Disorders due to abnormal variants of lysosomal enzymes, lipids and DNA nitrogenous bases: Disorders due to abnormal lysosomal enzymes: Tay-Sachs disease and Mucopolysaccharidoses; Disorders due to abnormal lipoprotein and lipid metabolism: hyper lipoproteinemia; Disorders due to abnormal purine metabolism: Lesch-Nyhan syndrome; disorders of pyrimidine metabolism: Orotic Aciduria.	CLO4

Transactional modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Discussion on evolution of X and Y chromosomes, In Depth interview on banding techniques; Seminar on molecular cytogenetic techniques, Assignment on Flow cytometry; Surprise Tests, one sentence summary, Practice exercise on karyotype analysis, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions and presentations

- 1. Gillham, N. (2011). Genes, Chromosomes and Disease. Pearson
- 2. Griffiths, A.J.F., Wessler, S.R. and Carroll, S.B. (2012). An Introduction to Genetic Analysis. W.H. Freeman Publication, USA.
- 3. Hein, S. and Mitelman, F. (2009). Cancer Cytogenetics. Wiley-Blackwell.
- 4. Korf, B.R and Irons, M.B. (2013). Human Genetics and Genomics. Wiley-Blackwell.
- 5. Kumar, A. and Srivastava, M. (2012) A textbook of Molecular Cytogentics, Narendra Publishing House, India
- 6. Purandare, H. and Chakravarty, A. (2000) Human Cytogenetic Techniques and Clinical Applications. Bhalani Publishing House, Mumbai, India.
- 7. Ram, M. (2010). Fundamental of Cytogenetics and Genetics. PHI Learning Pvt. Ltd.
- 8. Roy, D. (2009). Cytogenetics.Narosa Publishing House. New Delhi, India.
- 9. Tom, S and Read, A (2010). Human Molecular Genetics. Garland Science.
- 10. Shukla, A.N. (2009). Elements of enzymology. Discovery Publishing. New Delhi, India.
- 11. Voet, D. and Voet, J.G. (2008). Principles of Biochemistry. CBS Publishers & Distributors, New Delhi.

Course Code:	MME.522
Course Title:	Essentials of Immunology
Total Hours:	45

Course Learni	ng Outcomes:
---------------	--------------

On successful completion of the course the student will be able to:

CLO1: Evaluate basic concepts of immune system.

CLO2: Gain knowledge about various key processes related to development of immune system.

CLO3: Understand the concept of immune-based diseases as either a deficiency of components or excess activity as hypersensitivity.

CLO4: Apply the knowledge how immune system is involved in diseases caused by internal or external factors.

Unit: 1 12 Hours	CLO1
Immune System: The cells and organs of immune system, humoral immunity-	
immunoglobulin, basic structure, classes and subclasses, structural and functional	
relationships, nature of antigen, antigen-antibody reaction, antibody diversity, class	
switching, B and T cell development.	
Unit: 2 11 Hours	CLO2
Immune Effectors: Complement system, their structure, functions and mechanisms of	
activation by classical, alternative and lectin pathway. Th1 and Th2 response, various	
effector cells of immune system: DC, NK, Monocytes etc.	
Unit: 3 12 Hours	CLO3
Mechanisms of Immune System Diversity: Structure and functions of Major	
Histocompatibility Complex (MHC) and Human Leukocyte Antigen (HLA) system,	
polymorphism, distribution, variation and their functions.	
Unit: 4 10 Hours	CLO4
Immune System in Health and Diseases: Inflammation, hypersensitivity and	
autoimmunity, AIDS and immunodeficiencies, vaccine development.	

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations, and discussions.

- 1. Kindt, T.J., Osborne, B.A. and Goldsby, R.A. (2018). Kuby Immunology. W.H. Freeman, USA.
- 2. Abbas. (2018). Cellular and Molecular Immunology.CBS Publishers & Distributors, India.
- 3. Charles, A. and Janeway, J.R. (2001). Immunobiology: The immune system in health and disease Blackwell Publishing, USA.
- 4. Delves, P.J., Roitt, I.M. and Seamus, J.M. (2016). Roitt's Essential Immunology (Series–Essentials). Blackwell Publishers, USA.

L	Т	Р	С
3	0	0	3

- 5. Elgert, K.D. (2015). Immunology: Understanding the immune system. Wiley-Blackwell, USA.
- 6. Tizard. (2018). Immunology: An Introduction. Cengage Learning, Thompson, USA.
- 7. Owen, Judith A; Punt, Jenni, Stranford, Sharon A. Kuby's Immunology (2013), W.H. Freeman and Company: New York, 2013

Course Code:	HGE.523
Course Title:	Advanced Techniques in Human Genetics
Total Hours:	45

Γ	L	Т	Р	С
	3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Analyze various cellular processes using biochemical techniques.

CLO2: Learn the techniques for the visualization of a broad range of biological processes and features in cell structure.

CLO3: Learn the isolation of nucleic acids and its quantitative & qualitative analysis. Their importance for clinical molecular methods. Apply the knowledge to decipher the mechanisms of molecular and cell biology.

CLO4: Learn various immuno-techniques, Mutation analyses techniques and Cell and tissue culture techniques. Conceptualize principles of these different techniques used in life sciences.

UNIT I 11 Hours Biochemical Techniques: spectrometry; Mass, UV, IR, NMR and atomic absorption spectrophotometry; centrifugation: principle and applications; ultracentrifugation;	CLO1
UNIT II 11 Hours Microscopy: Light microscopy; phase contrast microscopy; fluorescent microscopy; scanning electron microscopy (SEM/FESEM); transmission electron microscopy (TEM);	CLO2
UNIT III 11 Hours Nucleic acids: Isolation, purification and analysis of nucleic acids; electrophoresis: principle of gel electrophoresis, polyacrylamide gel electrophoresis (PAGE and SDS- PAGE), agarose gel electrophoresis, pulse field gel electrophoresis (PFGE) and 2- Dimensional gel electrophoresis; polymerase chain reaction (PCR): principle, types and applications; PCR based markers:, SNPs; blotting techniques: southern, northern, western, dot blotting and hybridization; DNA fingerprinting.	CLO3
UNIT IV 11 Hours Flow Cytometry: Cell sorting; hybridoma technology: production of antibodies; histochemical and immuno techniques;; developing monoclonal and polyclonal antibodies; immunocytochemistry, radioimmunoassay (RIA); enzyme linked immunosorbent assay (ELISA) and autoradiography. Mutation analyses techniques: Restriction mapping, SSCP analyses, DNA sequencing-manual and automated methods. Cell and tissue culture techniques: Plants and animals.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Students visit to central instrument facility, Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Interview on various microscopic techniques; Visit to CIL and compile a report; Case studies solved by DNA fingerprinting, Assignment; In Depth interviews, Analysis of DNA sequencing data, Surprise Tests, term paper, Seminars, discussions and presentations, drawing flow charts for the techniques.

- 1. Brown, T.A. (2010). Gene cloning and DNA analysis: An Introduction. 6th Edition, Wiley-Blackwell Publisher, New York.
- 2. Goldsby, R.A., Kindt, T.J. and Osborne, B.A. (2008). Kuby Immunology. 6th Edition, W. H. Freeman & Company, San Francisco.
- 3. Gupta, P.K. (2005). Elements of biotechnology. Rastogi Publications, Meerut.
- Gupta, S. (2005). Research methodology and statistical techniques, Deep & Deep Publications (P) Ltd. New Delhi.
- 5. Kothari, C.R. (2008.) Research methodology(s). New Age International (P) Ltd., New Delhi
- 6. Lewin, B. (2010). Genes X, CBS Publishers & Distributors. New Delhi.
- 7. Mangal, S.K. (2007). DNA Markers in Plant Improvement. Daya Publishing House, New Delhi.
- 8. Nelson, D. and Cox, M.M. (2009). Lehninger Principles of Biochemistry. W.H. Freeman and Company, New York.
- 9. Primrose. S.B. and Twyman, R. (2006). Principles of Gene Manipulation and Genomics. Blackwell Publishing Professional, U.K.
- 10. Sambrook, J. (2006). The Condensed Protocols from Molecular Cloning: A Laboratory Manual .Cshl Press. New York.
- Sambrook, J. and Russell, D.W. (2000). Molecular Cloning: A Laboratory Manual (3 Vol-set).
 3rd Edition, CSHL Press, New York.
- 12. Sawhney, S.K. and Singh, R. (2005). Introductory Practical Biochemistry. Narosa Publishing House, New Delhi.
- 13. Slater, A., Scott, N.W., and Fowler, M.R. (2008). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford University Press, USA.
- 14. Wilson, K. and Walker, J. (2006). Principles and Techniques of Biochemistry and Molecular biology. 6th Edition, Cambridge University Press India Pvt. Ltd., New Delhi.
- 15. Sue Carson Heather Miller Melissa Srougi D. Scott Witherow (2019) Molecular Biology Techniques. Academic Press, USA

Course Code:	HGE.524
Course Title:	Human Anatomy and Physiology
Total Hours:	45

L	Τ	Р	С
3	0	0	3

Learning outcome

CLO1: Understand anatomical and physiological functions of various tissues.

CLO2: Understand the clinical scenarios and be able to interpret physiological function.

CLO3: Recognize the cell structure and function, histology, gross anatomy and physiology of several organ systems.

CLO4: Understand and predict the body response to stimuli. Recognize the principle of homeostasis and control mechanisms

UNIT I 11 Hours	CLO1
Muscular System: Structure and organization of muscles: skeletal, cardiac and	
smooth muscles; neuromuscular junction.	
Cardiovascular System: Physiological anatomy of Heart; cardiac muscle, cardiac	
cycle; blood constituents; hematopoiesis; cardiovascular regulation.	
UNIT II 12 Hours	CLO2
Digestive System: Anatomy of Gastrointestinal tract, physiology of salivary	
secretion, mouth and esophagus, epithelial barrier function; digestion and absorption	
in GIT; GIT secretions and accessory glands; BMR.	
Urinary System: Physiological anatomy Kidney; urine formation; regulation of	
volume and concentration of body fluids, KFT.	
UNIT III 11 Hours	CLO3
Nervous System: Organization of nervous system, synapse, generation of action	
potential; vision; hearing and tactile response, degeneration and regeneration of	
peripheral nerves.	
Thermoregulation and stress adaptation: Comfort zone; body temperature –	
physical, chemical and neural regulation; acclimatization.	
UNIT IV 11 Hours	CLO4
Respiratory System: Anatomical considerations; mechanism of respiration; neural	
and chemical regulation of respiration; Physiology of high altitude, hypoxia, PFT.	
Reproduction: Physiology of reproductive system (male, female), pregnancy,	
physiology of fetus.	

Transactional Modes: Lecture; Seminar; Tutorial; Virtual classrooms; Problem solving; Self-learning; group discussion.

Internal assessment shall be through any of the following: Assignment; In Depth interviews, Surprise Tests, term paper, Seminars, discussions, and presentations.

- 1. Brody, T. (1998). Nutritional biochemistry. Academic Press, USA.
- 2. Devlin, T.M. (2005). Textbook of Biochemistry with clinical correlations. John
- 2. Wiley & Sons Inc. USA.
- 3. Guyton. (2007). Textbook of medical physiology. 11th Edition. Elsevier India Pvt. Ltd. New Delhi.
- 4. Hill, R.W, Wyse, G. A. and Anderson, M. (2008). Animal physiology. Sinauer Associates Inc. USA.
- 5. Khurana. (2006). Textbook of medical physiology. Elsevier India Pvt. Ltd.
- 6. Murray, R.K. (2009). Harper's illustrated biochemistry. Jaypee Publishers,

- 7. New Delhi, India.
- 8. Tyagi, P. (2009). A textbook of Animal Physiology. Dominant Publishers and
- 9. distributors, New Delhi, India.
- 10. Silverthorne D, (2011) Human Physiology, Pearson; 6th edition.
- 11. Sherman V. (2013) Vander's Human Physiology. McGraw-Hill 13th edition.
- 12. Jain A.K. (2021). Textbook of physiology. Avichal Publishing Company-9th Edition.

Course Code:	MME.525
Course Title:	Essentials of Immunology (Practical)
Total Hours:	30

L	Т	Р	С
0	0	2	1

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand the basic concepts in handling of blood samples.

CLO2: Identification of different cells in blood

CLO3: Conceptualize the Immunologic techniques used in diagnosis of diseases.

CLO4: Hands on experience in purification of antibodies.

List of Practicals

1.	. Separation of Plasma and Serum from the blood samples.	
2.	. Blood film preparation and identification of cells	
3.	Separation of mononuclear cells	
4.	Lymphoid organs and their microscopic organization	
5.	5. Double diffusion and immuno-electrophoresis	
6.	ELISA	
7.	Radial immuno diffusion	
8.	. Purification of IgG from serum	

*Practical can be modified depending upon the available faculty/facility.

Suggested Reading:

- 1. Practical immunology (2002) by F.C. Hay and O.M.R. Westwood, P.N. Nelson, L. Hudson (Wiley-Blackwell).
- 2. Clinical immunology and serology: A laboratory perspective (1997) by Stevens C.D (FA Davis Company, Philadelphia).

Transactional Modes: Hands-on Practicals; Demonstration; Tutorial; Self-learning.

Evaluation criteria:

A. Continuous Assessment = 60 Marks

Based on performance and good lab practices of the students and completion of the record book

(60 divided by the number of practicals)

B. Final Examination = **40 Marks**

- ii. Subjective question = 10 Marks
- iii. Performing experiment = 20 Marks
- iv. Viva voce = 10 Marks

Course Code:	HGE.526
Course Title:	Clinical Genetics (Practical)
Total Hours:	45

L	Т	Р	С
0	0	6	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Interpret how genetic factors predispose to mendelian and adult onset diseases

CLO2: Implications of these predispositions for diagnosis, prevention, and treatment.

CLO3: Appreciate the importance of genetic counseling to assert the birth of a children affected with genetic disorders

CLO4: Assess the clinical features of common chromosomal alterations.

CLO5: Gain an insight into specific exposures that are likely to be teratogenic in humans

CLO6: Application of appropriate molecular biology techniques for diagnosis, disease prediction and prevention.

List of Practical work:

1	Genetic assessment and drawing pedigree.	CLO1
2	Genetic counseling	CLO2, CLO3
3	Common chromosomal disorders-case studies	CLO4
4	Teratogens and dysmorphology	CLO5
5	DNA and RNA isolation, quantification, gel electrophoresis	CLO6
	(agarose/PAGE),	
6	PCR-RFLP	
7	RT-PCR	
8	ELISA	

Transactional Modes: Lecture; Demonstration; Virtual classrooms; Problem solving; Self-learning, Pedigree drawing.

Evaluation criteria for practical courses:

• Continuous Assessment = **60 Marks**

Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practicals)

• Final Examination = **40 Marks** Subjective question = 10 Marks Performing experiment = 20 Marks Viva voce = 10 Marks

- 1. Brooker, R.J (2017). Genetics: analysis and principles. 6th Ed. New York, NY: McGraw-Hill Education.
- 2. Hartwell, L. et al (2017). Genetics: from genes to genomes. 6th Ed. New Your, NY: McGraw-Hill Education.
- 3. Helen, M.K. 2002. ABC of clinical Genetics. 3rd Ed. BMJ Publishing Group. London.

Course Code:	MME.528
Course Title:	Molecular Biology
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Conceptualization of molecular mechanisms involved in cellular functioning.

CLO2: Understanding the molecular processes of DNA replication

CLO3: Study the process of transcription in prokaryotes and eukaryotes.

CLO4: Understand the concept of Genetic code, process of translation and post translational modifications

Unit: 1 12 Hours Nucleic acids, Genes and Genome organization: Chemical structure of DNA and base composition, Watson-Crick model, mitochondrial DNA, Chromosome Structure, Chromatin and the Nucleosome, Chromatin structure: euchromatin, heterochromatin, Constitutive and facultative heterochromatin, Regulation of chromatin structure and nucleosome assembly, typical structure of a eukaryotic genes including various regulatory elements.	CLO1
Unit:2 12 Hours DNA replication and repair: Mechanisms of DNA replication in eukaryotes, Enzymes and accessory proteins involved in DNA replication, Replication errors and proofreading, telomeres, DNA damage and repair mechanisms.	CLO2
Unit: 3 11 Hours Transcription and mRNA processing: Different forms of RNA: mRNA, tRNA, rRNA and other Types of RNA Eukaryotic transcription: Initiation, Elongation & Termination, general and specific transcription factors, Regulatory elements and mechanisms of transcription regulation, RNA processing and editing, post transcriptional gene regulation.	CLO3
Unit: 4 10 Hours Translation: Genetic code, eukaryotic translation, the translation machinery, mechanisms of chain initiation, elongation and termination, regulation of translation, co-and post- translational modifications of proteins. Transactional Modes: Lecture: Demonstration: Tutorial: Lecture cum demonstration:	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations and discussions.

Suggested Reading:

- 9. Sambrook, J., Fritsch, E. F., & Maniatis, T. (2015). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Pressn New York.
- 10. Berk, A. Chris, A.K. & Krieger, M. (2011). Molecular Cell Biology. W.H. Freeman, USA.
- 11. Robertis, (2011). Cell and Molecular Biology. Lippincott Williams & Wilkins.
- 12. Karp, G. (2010). Cell and molecular biology: concepts and experiments. John Wiley & Sons.
- 13. Krebs, J. E., Goldstein, E. S., & Kilpatrick, S. T. (2017). Lewin's Genes XII. Jones & Bartlett Learning.
- 14. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., & Levine, M. (2003). Molecular Biology of the Gene Benjamin Cummings.
- 15. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2007). Molecular biology of the cell. Garland Science. New York, 1392.
- **16.** Fasman, G.D. (1989). Practical Handbook of Biochemistry and Molecular Biology. CRC Press, Taylor and Francis Group, UK.

Course Code:	HGE.529
Course Title:	Principles of Ecological Science
Total Hours:	30

L	Т	Р	С
2	0	0	2

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Improve their knowledgebase about basics of ecological science

CLO2: Conceptualize and contribute in environmental studies

CLO3: Improve student's aptitude for research and development on ecological succession and dynamics

CLO4: Contribute to conservation science

UNIT I 6 Hours	CLO1
Environmental components: Physical environment; biotic environment; biotic and	
abiotic interactions. Concept of habitat and niche; resource partitioning; character	
displacement. Major terrestrial biomes; theory of island biogeography; biogeographical	
zones of India.	
UNIT II 8 Hours	CLO2
Biological components of environment: Characteristics of a population; life history	
strategies (r and K selection); concept of metapopulation – demes and dispersal,	
interdemic extinctions, age structured populations; Species Interactions: Types of	
interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis;	

Community Ecology: Nature of communities; community structure and attributes;	
levels of species diversity and its measurement; edges and ecotones.	
UNIT III 8 Hours	CLO3
Ecosystem and Ecological Succession: Ecosystem: structure and function; energy	
flow and mineral cycling (C, N, P); primary production and decomposition; structure	
and function of some Indian ecosystems: terrestrial and aquatic. Ecological	
Successions: Types; mechanisms; changes involved in succession; concept of climax.	
UNIT IV 8 Hours	CLO4
Applied Ecology and Conservation Biology: Environmental pollution; biodiversity:	
status, monitoring and documentation; biodiversity management	
approaches; Principles of conservation and its management; Indian case studies on	
conservation/management strategy: Project Tiger, Biosphere reserves.	
	Droble

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning; MCQ practice.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Readings:

- 1. Smith, Robert Leo, et al. "Elements of ecology." (2015): E9.
- 2. Recknagel F. 2002 Ecological Informatics: Understanding Ecology by Biologically-Inspired Computation, Springer, New York.
- 3. Odum E.P. 1983 Basic Ecology. Saunders International Edition, Japan
- 4. Michael Begon, 2020 Ecology: From Individuals to Ecosystems 5th Edition,

Discipline Elective -II

Course Code:	HGE.527
Course Title:	Human Embryology and Developmental Genetics
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Conceptualize basics of reproductive physiology

CLO2: Correlate genetic regulation in different embryonic developmental stages

CLO3: Evaluate the role of biomolecules in embryonic development.

CLO4: Know different genetic and environmental triggers for post-natal development, ageing and senescence.

UNIT I 12 Hours	CLO1
Basic concepts of development: Gametogenesis; fertilization; embryogenesis:	
gastrulation and implantation of embryo; fetal membrane and placenta; potency,	
commitment, specification, induction, competence, determination, and differentiation.	
Role of Sry, Sox9 and WNT4 and DAX1 in early gonad differentiation	
UNIT II 11 Hours	CLO2
Gene expression regulation in development: Basics of gene expression regulation	
during early embryogenesis; homeotic genes, P granules, role of key developmental	
genes: polycomb gene, SOX, HOX.	
UNIT III 11 Hours	CLO3
Stem Cell and Organogenesis: Stem cell: embryonic and adult; cell-cell	
communication; neural crest cells and axonal specificity; vertebrate eye and central	
nervous system development; hematopoiesis.	
UNIT IV 11 Hours	CLO4
Post-natal Development, Aging and senescence: Environmental and genetic factors	
during maturations, Sex linked changes, Deciduous and primary teeth, Clinical death.	
Teratology: Teratogens, introduction to toxicogenomic.	

Transactional Modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Readings:

- 1. Gilbert, S.F. (2013). Developmental Biology. Tenth Edition.
- 2. Slack, J.M.W. (2012). Essentiel Developmental Biology. Third Edition.
- 3. Moody, A.A. (2014). Principles of Developmental Genetics. Second Edition.
- 4. Slack, J.M.W. (2018). The Science of Stem Cells. First Edition.
- 5. Milunsky, J. & Milunsky, A. (2010). Genetic Disorders and the Fetus: Diagnosis, Prevention & Treatment. Willey Blackwell India, New Delhi.
- 6. Prakash, G. (2007). Reproductive Biology. Narosa Publication House Pvt. Ltd., New Delhi.
- Sadler, T.W., Tosney, K., Chescheir, N.,C., Imseis, H., Leland, J. and Sadler-Redmond, S.,L. (2011).Langman's Medical Embryology (Longmans Medical Embryolgy). Lippincott Williams and Wilkins.
- 8. Keith L. Moore BA, T. V. N. Persaud MD., Mark G. Torchia (2019 The Developing Human Clinically Oriented Embryology, Elsevier, Netherlands

Course Code:	MME.527
Course Title:	Stem Cell and Regenerative Medicine
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand basics of cell culture

CLO2: Understand basic stem cell biology.

CLO3: Gain conceptual knowledge about requirements for tissue engineering.

CLO4: Know regenerative medicine and its potential applications.

Unit: 1 11 Hours	CLO1
Basics of cell culture and media, Culturing primary cells and cell lines, suspension and	
adherent cultures, cell growth, growth inhibition and apoptotic studies, Embryo	
culture, transplantation and teratogens, teratomas, stem cell culture, organ culture.	
Unit: 2 12 Hours	CLO2
Stem Cells: Stem cells and their properties, classification of stem cells, in-vitro culture	
techniques, isolation, identification and characterization of stem cells, stem cells in	
various organs and in disease conditions.	
Unit: 3 11 Hours	CLO3
Tissue Engineering: Principles of tissue culture, tissue and organ culture, extracellular	
matrices, bioreactors, ethical issues related to stem cell therapies, stem cell banks, bone	
marrow transplantation.	
Unit: 4 11 Hours	CLO4
Regenerative Medicine: Modes of tissue and organ delivery, tissue Engineering and	
transplantation techniques, immuno isolation techniques, regeneration of bone and	
cartilage, Islet cell transplantation and bio-artificial pancreas, lung regeneration	

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Group discussions, Surprise Tests, case analysis, simulated problem solving, classroom assignments, term paper, presentations and discussions.

Suggested Reading:

- 1. Lanza, R., Gearhart, J. (2016). Essential of Stem Cell Biology. Elsevier Academic Press.
- 2. Lanza, R., Klimanskaya, I. (2018). Essential Stem Cells Methods. Academic Press.
- 3. Mao, J. J. & (2017). Translational approaches in tissue engineering and regenerative medicine. Artech House.
- 4. Lanza, R. (2017). Principles of Tissue Engineering, 3rd Edition. Academic Press
- Stein, G. S., Borowski, M., Luong, M. X., Shi, M. J., Smith, K. P., & Vazquez, P. (Eds.). (2011). Human stem cell technology and biology: A research guide and laboratory manual. John Wiley & Sons.
- Lanza, R., Blau, H., Gearhart, J., Hogan, B., Melton, D., Moore, M., ... & Weissman, I. (Eds.). (2014). Handbook of Stem Cells, Two-Volume Set: Volume 1-Embryonic Stem Cells; Volume 2-Adult & Fetal Stem Cells. Elsevier.

Semester – III

Course Code:	HGE.551
Course Title:	Pharmacogenomics and Nutrigenomics
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Define pharmacogenomics and will understand its application in clinical setting. The students will be aware about the challenges in the field on account of different ethnic background.

CLO2: Have an understanding about the nutritional requirements and the role of gut microbiota in human nutrition.

CLO3: Be aware of the effect of genetic polymorphisms in variable response to micronutrients and will understand the regulation of transcription factors by the nutrients.

CLO4: Get aware of the genetic markers involved in the regulation of metabolomics and the role of these markers in health and disease.

UNIT I 12 Hours	CLO1
Pharmacogenomics: Pharmacokinetics and pharmacodynamics; drug-metabolizing	0201
enzymes: cytochrome P450s, VKORC1 and TPMT; personalized treatment: example	
of warfarin, anti-epileptic and anti-cancer drugs like methotrexate and tamoxifen,	
trastuzumap; heredity disorders with altered drug response: porphrriavariegata,	
hemoglobinopathies, Grigler-najjar syndrome; concept of pharmacogenomics;	
UNIT II 11 Hours	CLO2
	CLO2
Nutritional Biochemistry: Essential and non-essential nutrients; micro and macro	
nutrients; basal metabolic rate (BMR); malnutrition; malabsorption and interventional	
strategies. Concept of gut microbiota in human nutrition.	
Gut-brain axis in absorption; Role of Prebiotics and Probiotics in Gut brain axis	
UNIT III 11 Hours	CLO3
Nutrigenomics in determining health: Diet and gene expression; nutritional status in	
early life and metabolic programming; nutrients as regulators of activity and	
transcription factors; modulating the risk of obesity and vitamin D deficiency	
through nutrigenomics.	
UNIT IV 12 Hours	CLO4
Biomarkers and recent advances in Nutrigenomics: Genetic and nutritional control of	
lipid metabolism, metabolomics; effect of diet on epigenetic processes, concept of	
oral and gut microbiome and its implications in health and disease; therapeutic	
approaches through microbiota transplantation.	

Transactional Modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Literature survey on current medicines based on pharmacogenomics, In-depth interview on ADRs. Group activity to calculate BMI, Preparation of a list of essential micro and macronutrients, Surprise Tests, case analysis,

classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Readings:

- 1. Altman RB, Flockhart D and Goldstein DB (2012). Principles of Pharmacogenetics and Pharmacogenomics. Cambridge University Press.
- 2. Ferguson, L,R.(2013) Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition. CRC Press.
- 3. Tollefsbol T (2011). The New Molecular and Medical Genetics. Elsevier Inc
- 4. Simopoulos A.P. and Ordovas J.M. (2004). Nutrigenetics and Nutrigenomics Karger Publishers
- 5. Rimbach, G and Fuchs, J (2005) Nutrigenomics (Oxidative Stress and Disease). CRC press
- 6. Yui-Wing Francis Lam Stuart Scott (2018) Pharmacogenomics: Challenges and Opportunities in Therapeutic Implementation, Elsevier, Netherlands

Course Code:	HGE.552
Course Title:	Genetic Diseases and Therapies
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand the genetic causes of monogenic disorders and common multifactorial diseases

CLO2: Understand the genetic basis of Genomic imprinting. Analyze the consequences of altered epigenetic processes in causing genetic disorders

CLO3: Understanding genetic screening

CLO4: Apply the principal of genetics and biostatistics for genetic disorders risk assessment

UNIT I 11 Hours	CLO1
Monogenic Disorders: Cystic fibrosis; Huntington's disease; Duchenne Muscular	
dystrophy; X-linked rickets. Multifactorial Diseases: Diabetes type 2; Cancers;	
Hypertension; Obesity; Neurodegenerative diseases, Depression, IBS	
UNIT II 11 Hours	CLO2
Genomic Imprinting and Human Diseases: Uniparental disomy & genomic imprinting:	
Syndromes: Prader-Willi & Angelman syndrome; Beckwith-Wiedemann syndrome &	
Silver Russell Syndrome; Role of Imprinting brain development and behavior.	
UNIT III 11 Hours	CLO3
Genetic Screening: Pre symptomatic testing for genetic diseases and malignancy,	
carrier detection; prenatal and postnatal screening; Assisted reproductive techniques	
and Pre-implantation diagnosis; Genetic Counseling.	

UNIT IV 12 Hours	CLO4
Therapies for genetic disorders and multifactorial diseases: Stem cell therapies: stem cell types, cord blood cells, bone marrow transplantation; current stem cell therapies;	
gene therapies: methods; diseases suitable for gene therapies: hemoglobinopathies,	
cystic fibrosis,	
muscular dystrophies, cancer; challenges in gene therapy; regulatory requirements, RNA Therapies	

Transactional Modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following:

Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions and presentations, Assignment on various gene therapies in use currently, Group activity to explore regulatory requirements and prepare a report.

Suggested Readings:

- 1. Brown, S.M., (2009). Essentials of Medical Genomics. Wiley-Blackwell.
- 2. Jocelyn, E. K., Elliot, S. G., Stephen, T. K. (2009), Lewin's Gene X. Jones & Barlett.
- 3. Krebs, J.E., Goldstein, E.S. and Kilpatrick, S.T. (2014). Lewin's Genes XI. Jones and Bartlet India Pvt. Ltd.
- 4. Lodish, H., Berk, A., Chris, A. K., Krieger, M. (2008), Molecular Cell Biology. W.H. Freeman, USA.

Course Code:	HGE.553
Course Title:	Recombinant DNA Technology and Therapeutics
Total Hours:	45

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Demonstrate cloning and expression vectors in E.Coli in recombinant DNA techniques CLO2: Get familiar with vectors for Eukaryotes

CLO3: Learn conventional methods used in recombinant DNA technology

CLO4: Learn therapeutics aspect of recombinant DNA technologies

UNIT I	CLO1
11 Hours	
Basics of Genetic Engineering: Isolation and purification of nucleic acids; restriction	
and DNA modifying enzymes; restriction modification systems; cloning vectors:	
plasmids, phages, lambda vectors, cosmids, PAC, BAC, YAC; selection and	
screening of clones.	
UNIT II 11 Hours	CLO2
Construction of DNA libraries: Genomic and cDNA libraries; screening of genomic	
and expression libraries.	

Analysis of gene expression: Real-time-PCR; digital PCR; RNA analysis; EST analysis; promoter analysis; TSS mapping; cDNA	1 0	
serial analysis of gene expression (SAGE).	,	
UNIT III	11 Hours	CLO3
Expression Vectors: Animal virus derived vectors-Sv-40,	caccinal/bacculo,	
retroviral vectors and pichia vectors system; Expression ve	ctors and Protein	
purification methods, Inclusion bodies and methodologies to redu	ice its formation.	
UNIT IV	12 Hours	CLO4
Techniques and Applications of recombinant DNA technology	gy: Sites specific	
mutagenesis; Gene Editing through; CRISPR/CAS system, Genetically modified		
microbes (Recombinant bacteria) for the production of commercial scale production		
of proteins, pharmaceuticals; transgenic animals; RNA based ther	apeutics.	

Transactional Modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, home work assignments, term paper, Seminars, term papers, discussions and presentations

Suggested Readings:

- 1. R.W. Old & S.B. Primrose (2007) Principles of Gene Manipulation 7th Edition Blackwell science.
- Bernard R. Glick & Jack J. Pasternak. (2010) Molecular Biotechnology 4th Edition ASM Press Washington.
- 3. James Watson, Micheal Gilman Jan Witkowsk (2007) Recombinant DNA 3rdedition . CSHL, New York.
- 4. CokinRateldge and Bjorn Christiansen, (2006) Basic Biotechnology 3rdEdition Cambridge University press.
- 5. John E. Smith. (2009) Biotechnology 5th Edition by Cambridge University press.
- 6. Molecular Biology of Gene 6th Edition by Watson CSHL Press New York.
- 7. Sambrook& Russell Molecular cloning, CSHL Press, New York.
- David & Freifelder John & Barlett (2008) Molecular biology 2nd Edition, Narosa publishing, New Delhi.

Related Weblinks:

- 1. http://www.genengnews.com/ontheweb.asp
- 2. http://www.ige-india.com/
- 3. http://www.icgeb.org/~bsafesrv/
- 4. http://www.livescience.com/32648-whats-genetic-engineering.html

Course Code:	MME.554
Course Title:	Tools of Bioinformatics (Practical)
Total Hours:	60

ſ	L	Т	Р	С
	0	0	6	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Analyze publicly available and experimental genomics data
- 2. Perform in-silico prediction of protein structures and interactions
- 3. Perform in-silico functional annotation of genetic findings
- 4. Demonstrate physical property of biomolecules in silico
 - 1. Access to sequence databases (downloading DNA/RNA/Protein sequences).
 - 2. Performing sequence alignment using various tools (BLAST, MSA)
 - 3. Pipeline of RNA-seq analysis.
 - 4. Submission of SRA and TSA database.
 - 5. Genome wide association study and DNA microarray-data analysis.
 - 6. Understanding the evolutionary relationship using molecular phylogeny analysis.
 - 7. Prediction of Protein structure using sequence database
 - 8. Practical insights of tertiary structure prediction and comparative modelling
 - 9. Protein-protein and protein-ligand docking
 - 10. Evaluation of techniques for 3-D structure determination like X-ray, NMR, MS/MS analysis using case study.
 - 11. Structure-based drug design and virtual screening of the drug.
 - 12. Quantitative structure activity relations, Cheminformatics and pharmacophore mapping in therapeutic development.

Transactional Modes: Hands-on training; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Evaluation criteria for practical courses:

• Continuous Assessment = **60 Marks**

Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practicals)

- Final Examination = **40 Marks**
 - Subjective question = 10 Marks Performing experiment = 20 Marks Viva voce = 10 Marks

- 1. Laboratory Protocols. Third Edition. 2005. CIMMYT Applied Molecular Genetics Laboratory.
- 2. Koliantz, G & Szymanski, D.B. Genetics A Laboratory Manual. Second Edition. 2009. American Society of Agronomy, Crop Science Society of America.
- 3. Sambrook, J & Green, M.R. Molecular Cloning: A laboratory manual. Fourth Edition. 2013. Cold Spring Harbor Laboratory Press, U.S.
- 4. Pazos, F & Chagoyen, M. Practical protein bioinformatics.2015. Springer International Publishing, Switserland.

5. Agostino, M. Practical Bioinformatics. 2012. Garland Science. Taylor & Francis Group. New York and London.

Discipline Elective-III

Course Code:	HGE.555	
Course Title:	Biosafety, Bioethics, and Intellectual Property Rights	
Total Hours:	45	_

L	Т	Р	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Interpret the bioethical issues concerning biotechnological advancements like recombinant DNA technology, cloning, gene manipulation.

CLO2: Implement biosafety while carrying out research.

CLO3: Distinguish different types of Intellectual Property Rights.

CLO4: Describe the ways of protecting traditional knowledge from Biopiracy.

UNIT I11 HoursBiosafety: Good laboratory practices; Risk and safety assessment from genetically engineered organisms; special procedures for r-DNA based products; biological containment (BC) and physical containment (PC); CDC biosafety levels; biohazard management.UNIT II11 Hours	CLO1 CLO2
Bioethics: Ethical considerations during research, Use of Animals for clinical research, Embryonic and adult stem cell research, assisted reproductive technologies, cloning, MTP and Euthanasia; the element of informed consent; ethical issues of the human genome project.	
UNIT III11 HoursIntellectual Property Rights (IPRs): Various forms of IP – patents, industrial designs, trademark, geographical indications, and plant breeder's right; copyright: fair use, plagiarism; protection of indigenous intellectual property.	CLO3
UNIT IV 12 Hours Patent system: Patent filing procedure in India and ways of patent protection in other countries: Determination of patentability of inventions, filing a patent application in India: timeline, procedure involved in the granting of a patent, patent cooperation Treaty (PCT).	CLO4

Transactional Modes: Lecture; Demonstration; Virtual classrooms; Tutorial; Lecture cum demonstration; Problem solving; Case study; Self-learning.

Internal assessment shall be through any of the following:

Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Readings:

- 1. Clarke, A (2012). Genetic Counseling: Practice and Principles. Taylor & Francis
- 2. Fleming, D.O. and Hunt, D.L. (2006). Biological Safety: Principles and Practices. American Society for Microbiology, USA.
- 3. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge.
- 4. Shannon, T.A. (2009). An Introduction to Bioethics. Paulist Press, USA.
- 5. Thompson J and Schaefer, B.D (2013). Medical Genetics: An Integrated Approach. McGraw Hill.
- 6. Vaughn, L. (2009). Bioethics: Principles, Issues, and Cases. Oxford University Press, UK.
- 7. WHO. (2005). Laboratory Biosafety Manual. World Health Organization.
- 8. Ahuja, V.K. (2017). Law relating to Intellectual Property Rights. LexisNexis, India. 3rd Edition.
- 9. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge, USA.
- 10. Neeraj, P. and Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.
- 11. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

Course Code:	MME.555	L	Τ	Р	C
Course Title:	Evolution and Developmental Biology	3	0	0	3
Total Hours:	45				

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- CLO1: Gain knowledge on concept related to origin of life.
- CLO2: Develop understanding regarding molecular evolution and original of first cell.
- CLO3: Know about concepts related to developmental processes.

CLO4: Understand pathology related to mechanisms of development and differentiation.

CLO1
CLO2

Unit: 3 12 Hours	CLO3
Basic Concepts of Development: Potency, Commitment, Specification, Induction,	
Competence, Determination and Differentiation, Morphogenetic gradients, Cell fate	
and cell lineages, Stem cells, Genomic equivalence and the cytoplasmic determinants,	
Imprinting, Mutants and transgenics in analysis of development.	
Unit: 4 11 Hours	CLO4
Gametogenesis, Fertilization, embryology and neurulation: Production of gametes,	
Cell surface molecules in sperm-egg recognition; embryonic development and	
formation of germ layers in humans, fetal development, sex determination, neural tube	
formation.	

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Reading:

- 1. Darwin, C. (1956). The Origin of Species: By means of natural selection or the preservation of favoured races in the struggle for life (No. 575.0162). Oxford University Press.
- 2. Dawkins, R. (1996). The blind watchmaker: Why the evidence of evolution reveals a universe without design. WW Norton & Company.
- 3. Futuyma, D.J. (2017). Evolution. Sinauer Associates Inc. USA.
- 4. Wilt, F. H., & Hake, S. (2004). Principles of developmental biology. W.W. Norton & Company, New York, USA.
- 5. Hall, B.K., & Hallgrimsson, B. (2017). Strasburger's Evolution. Jones and Bartlett Publishers, India.
- 6. Lewin, R. (2014). Human Evolution An Illustrated Introduction. Wiley-Blackwell, USA.
- 7. Scott, F., & Gilbert, S.F. (2017). Developmental Biology. Sinauer Associates, Inc. USA.
- 8. Slack, J.M.W. (2015). Essential Developmental Biology, Wiley-Blackwell, USA.

Foundation Course

Course Code:	MME.557
Course Title:	Concepts of Bioinformatics
Total Hours:	30

L	Т	Р	С
2	0	0	2

Course Learning Outcomes:

On successful completion of the course the student will be able to: CLO1: Analyze publicly available and experimental genomics data CLO2: Perform in-silico prediction of protein structures and protein-protein interaction CLO3: Perform in silico functional annotation of genetic findings

CLO4: Demonstrate the physical property of biomolecules in silico.

Unit I 6 Hours	CLO1	
Concept of biological databases: Nucleotide Sequence Databases, GenBank, DDBJ,		
EMBL, Sequence Flat file and submission process, Protein sequence databases,		
UniProt in detail, Mapping databases, Genomic databases, Data mining.		
UNIT II 8 Hours	CLO2	
Inferring relationships: Concept of global Vs. local sequence alignments, Dotplots,		
Scoring matrices, Pairwise sequence alignment, BLAST, Position-Specific scoring		
and PSI-BLAST, MegaBLAST, BL2SEQ, BLAT, FASTA Vs BLAST, Protein		
multiple sequence alignments, Basics of Sequence assembly and finishing.		
UNIT III 8 Hours	CLO3	
Sequence analysis: Gene Prediction methods, Promoter analysis, RNA secondary		
structure thermodynamics, refining multiple sequence alignment based on RNA		
secondary structure predictions, SNP discovery methods and databases, Genotyping,		
International haplotype map project, 1000 genomes project.		
Unit IV 8 Hours	CLO4	
Analysis for protein sequences: Predicting features of individual residues, Neural		
networks, Theory of Protein structure prediction, Protein structure databases, PDB in		
detail, Pathway and molecular interaction databases.		

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Case study; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations

- 1. Baxevanis, A.D. and Ouellette, B.F.F. (2005). Bioinformatics: A Practical guide to the Analysis of Genes and Proteins. Wiley-Interscience, USA.
- 2. Hall, B.G. (2011). Phylogenetic Trees Made Easy: A How-To Manual. Sinauer Associates, Inc. USA.
- 3. Lesk, A.M. (2008). Introduction to Bioinformatics. Oxford University Press, UK.
- 4. Zvelebil, M. and Baum, J. (2007). Understanding Bioinformatics, Garland Science, New York, USA.
- 5. Ramsden, J. (2010). Bioinformatics: An Introduction (Computational Biology). Springer, India.
- 6. Ye, S.Q. (2008). Bioinformatics: A Practical approach. Chapman & Hall/CRC, UK.
- 7. Mount, D. (2012). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press.
- 8. Graur, D., Li, W. H. (2000). Fundamentals of Molecular Evolution. Sinauer Associates.
- 9. Tisdall, J. (2001). Beginning Perl for Bioinformatics. O'Really Publishers.

Course Code:	HGE.558
Course Title:	Innovation and Entrepreneurship
Total Hours:	15

L	Т	Р	С
1	0	0	1

Course Learning Outcomes:

On the completion of this course, the learners will:

CLO1: Understand the basic concepts of entrepreneur, entrepreneurship, and its importance.

CLO2: Aware of the issues, challenges, and opportunities in entrepreneurship.

CLO3: Develop capabilities of preparing proposals for starting small businesses.

CLO4: Know the availability of various institutional supports for making a new start-up.

Unit I 4 Hours	CLO1	
Entrepreneurial Structure; Nature, Characteristics, functions and its role in economic		
development Entrepreneurship- problems and prospects in India. Entrepreneurial		
Behavior and Skills. Entrepreneurial traits and skills; Types of entrepreneurial ventures; enterprise and society in Indian context; Importance of women entrepreneurship		
enterprise and society in indian context, importance of women entrepreneursinp		
Unit II4 Hours	CLO2	
Role of industries/entrepreneur's associations and self-help groups; Funding opportunities		
for start-ups. Basic start-up problems; Preliminary contracts with the vendors, suppliers,		
bankers, principal customers; Contents of business plan/ project proposal.		
Unit III4 Hours	CLO3	
Promotion of a venture – Why to start a small business; How to start a small business;		
opportunity analysis, external environmental analysis, legal requirements for establishing		
a new unit, raising of funds, and establishing the venture		
Blending University Research and Entrepreneurship culture, National Innovation and		
startup policy for students and faculty 2019		
Unit IV 3 Hours	CLO4	
Opportunities and challenges associated with establishing entrepreneurship in the field of		
Genetics and Molecular Medicine, Success stories		

- 1. Arora, Renu (2008). Entrepreneurship and Small Business, Dhanpat Rai & Sons Publications.
- 2. Chandra, Prasaaan (2018). Project Preparation, Appraisal, Implementation, Tata Mc-Graw Hills.
- 3. Desai, Vasant (2019). Management of a Small-Scale Industry, Himalaya Publishing House.
- 4. Jain, P. C. (2015). Handbook of New Entrepreneurs, Oxford University Press.
- 5. Srivastava, S. B. (2009). A Practical Guide to Industrial Entrepreneurs, Sultan Chand & Sons.
- 6. National Innovation and startup policy for students and faculty 2019, Government Policy document http://rmkcet.ac.in/RMK/NISP%20policy.pdf

Course Code:	HGE.600
Course Title:	Dissertation Part-I
Total Hours:	120

L	Т	Р	С
0	0	8	4

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Apply genetic and genomics technique for research
- 2. Construct study design
- 3. Interpret result of a genetic experiment
- 4. Present oral and written scientific communication skills

The objective of dissertation part-I would be to ensure that the student learns the nuances of the scientific writing. Herein the student shall have to write his synopsis including an extensive review of literature with simultaneous identification of scientifically sound (and achievable) objectives backed by a comprehensive and detailed methodology. Student may start working in the respective laboratory.

Students can opt for dissertation work in industry, national institutes or Universities in the top 100 NIRF ranking. Group dissertation can be opted, with a group consisting of a maximum of four students. These students may work using a single approach or multidisciplinary approach. Research projects can be taken up in collaboration with industry or in a group from within the discipline or across the discipline

Synopsis will be evaluated as per the University policy.

Evaluation criteria:

Examiner	Marks	Evaluation
Supervisor	50	Dissertation proposal and presentation
HoD and Senior-most faculty of the department	50	Dissertation proposal and presentation

Semester IV

Course Code:	HGE.601
Course Title:	Dissertation Part-II
Total Hours:	60

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Apply genetic and genomics technique for research
- 2. Design research studies and perform research following scientific and ethical guidelines
- 3. Interpret results of genetic and molecular experiments
- 4. Present oral and written scientific literatures

During the course student will perform:

- a. Synthesis of research hypothesis
- b. Review of literature and identify research gap
- c. Formulate methodology to achieve the objective of the research idea
- d. Present articles and research ideas to fellow students and in other platforms
- e. Perform researh and interpret the results
- f. Write research reports and may publish research findings (if significant)

Dissertation will be evaluated by the Department, as per the University policy. Evaluation criteria

Examiner	Marks	Evaluation		
Supervisor	50	Continuous assessment (regularity in work, mid-term evaluation) dissertation report, presentation, final viva-voce		
External expert, HoD and senior-most faculty of the department		Dissertation report (30), presentation (10), final viva-voce (10)		

L	Т	Р	С
0	0	40	20

Examination pattern for 2022-24 session

Core,DisciplineElective,CompulsoryFoundation,ValueAddedandInterdisciplinaryCourses			Discipline Enrichment Course		Entrepreneurship Course	
	Marks	Evaluation	Marks	Evaluation	Marks	Evaluation
Internal Assessment	25	Various	-	-	-	-
Mid-semester test (MST)	25	Subjective	50	Objective	25	Objective
End-semester test (EST)	50	Subjective (70%) Objective (30%)	50	Objective	25	Subjective

Dissertation Proposal (Third Semester)		Dissertation (Fourth Semester)			
	Marks	Evaluation		Marks	Evaluation
Supervisor	50	Dissertation proposal and presentation	Supervisor	50	Continuous assessment (regularity in work, mid- term evaluation) dissertation report, presentation, final viva- voce
HoD and senior-most faculty of the department	50	Dissertation proposal and presentation	External expert, HoD and senior- most faculty of the department	50	Dissertation report (30), presentation (10), final viva-voce (10)

Evaluation pattern similar to fourth semester dissertation will apply for internship where supervisor will award 50% marks and external co-supervisor, HoD and senior-most faculty will award 50% marks.