CENTRAL UNIVERSITY OF PUNJAB

M.Sc. in Chemical Sciences (Medicinal Chemistry)

Batch- 2022

Department of Pharmaceutical Sciences and Natural Products

Graduate attributes for M. Sc. in Chemical Sciences (Medicinal Chemistry)

After completing M.Sc. in Medicinal Chemistry, the graduates will have qualityconscious service providing attribute by adopting the knowledge of spectral analysis and chromatographic techniques in manufacturing and R & D of drugs. They will be able to implement the role of Computer-Aided Drug Design (CADD) in the modern drug discovery & development process and its applicability in higher studies and at the industrial level. They will be able to apply the knowledge in process chemistry for the development of synthetic methodologies, including green chemistry, peptide chemistry, retro-synthesis for making the drugs affordable to the public. They will have the ability to create, select and apply appropriate techniques, resources and modern analytical tools to identify, formulate, and solve problems of medicinal chemistry and will develop attribute to become self-reliant in Active Pharmaceutical Ingredients (APIs) by the development of scale-up of APIs and intermediates, unit operations and industrial safety guidelines. Moreover, the program will help them make their career in academic, research, and industry.

Course Structure

SEMESTER 1

S.	Paper	Course Title		L	Т	Р	Cr
No.	Code		Туре				
1.	CMC.506	Organic Chemistry-I	C	3	0	0	3
2.	CMC.507	Organic Synthesis-I (Practical) SB		0	0	4	2
3.	CMC.508	Modern Spectral and ChromatographyCCechniquesC		3	0	0	3
4.	CMC.509	Spectral Analysis (Practical)	SB	0	0	4	2
5.	CMC.510	Medicinal Chemistry-I C		3	0	0	3
6.	CMC 511	Chemistry of Natural Products C		3	0	0	3
7.	XXX CMC 512	Interdisciplinary Course (Offered by Other department) Basics of Drug Discovery (Offered by the department)	ID	2	0	0	2
	C	opt any one course from following elect	tives				
8. 9.	CMC.513 CMC.514	Current Trends in Organic Synthesis Quantum Chemistry	DE	3	0	0	3
10.	CHM.509	Inorganic Chemistry-1					
11.	CHM.511	Physical Chemistry – I					
		Total	1	17	0	8	21

CF: Compulsory Foundation, **C**: Core, **ID**: Interdisciplinary, **DE**: Discipline elective, **SB**: Skill based

L: Lectures T: Tutorial P: Practical Cr: Credits

MOOC: MOOC may be taken up 40% of the total credit (excluding dissertation credits). MOOC may be taken in lieu of any course but content of that course should match minimum 70%.

SEMESTER II

S. No.	Paper Code	Course Title	Course Type	L	T	Р	Cr
1.	CMC.521	Organic Chemistry-II	C	3	0	0	3
2.	CMC.522	Organic Synthesis-II- (Practical)	SB	0	0	4	2
3.	CMC.523	Fundamentals of Computer Aided Drug Design	С	3	0	0	3
4.	CMC.524	<i>In silico</i> Drug Design- (Practical)	SB	0	0	4	2
5.	CMC.525	Advanced Spectral Analysis	C	3	0	0	3
6.	CMC. 526	Medicinal Chemistry-II	C	3	0	0	3
7.	CMC.527	Process Chemistry	CF	3	0	0	3
8.	XXX CMC.528	Value added course (VAC) offered by other department Modern analytical techniques offered by our department	VAC	2	0	0	2
	Opt	any Course from follow	wing electives	5			
9.	CMC.529	Green Chemistry	DE	3	0	0	3
10.	CMC.530	Nuclear Chemistry					
11.	CHM.521	Inorganic Chemistry – II					
12	CHM.523	Physical Chemistry – II					
		Total		20	0	8	24

Discipline elective, **SB**: Skill based

L: Lectures T: Tutorial P: Practical Cr: Credits

MOOC: MOOC may be taken up 40% of the total credit (excluding dissertation credits). MOOC may be taken in lieu of any course but content of that course should match minimum 70%.

SEMESTER III

S. No.	Paper Code	Course Title	Course Type	L	Т	P	Cr
1. 2.	CMC.551 CMC.552	Research Methodology & Biostatistics Organic Chemistry-III	CF C	3 3	0 0	0 0	3 3
3.	CMC.553	Organic Synthesis-III-(Practical)	SB	0	0	4	2
4.	CMC.554	Entrepreneurship CF 1 0		0	1		
5.	CMC.555	Organic Chemistry Worksheet CF 2 0		0	2		
6.	CMC.556	Computer Applications	C	3	0	0	3
7.	CMC.600	Dissertation Part-I	Dissertation Part-I SB 0 0 8				4
Opt	any electi	ve course from the following					
8.	CMC.557	Logics of Organic Synthesis	DE	3	0	0	3
9.	CMC.558	Bioinorganic and Biophysical Chemistry					
10.	CHM.525	Molecular Spectroscopy					
11.	CHM.551	Inorganic Chemistry-III					
	Total			15	0	12	21

Discipline elective, **SB**: Skill based **L: Lectures T: Tutorial P: Practical Cr: Credits**

MOOC: MOOC may be taken up 40% of the total credit (excluding dissertation credits). MOOC may be taken in lieu of any course but content of that course should match minimum 70%.

SEMESTER IV

S. No.	Paper Code	Course Title	Course Type	L	Т	Р	Cr
1	CMC.601	Dissertation Part-II	SB	0	0	40	20
		Total		0	0	40	20

Discipline elective, **SB**: Skill based **L: Lectures T: Tutorial P: Practical Cr: Credits**

Examination Pattern

Core, Di Compulsory Added an Courses	scipline Found d Int	Elective, lation, Value erdisciplinary	Discipline Enrichment Course		Entrepreneurship Course		
	Marks	Evaluation	Marks	Evaluation	Marks	Evaluation	
Internal	25	Various	-	-	-	-	
Assessment							
Mid-	25	Subjective	50	Objective	25	Objective	
semester							
test (MST)							
End-	50	Subjective	50	Objective	25	Subjective	
semester		(70%)					
test (EST)		Objective					
		(30%)					

Objective Questions- one word answers, fill-in the blank, sentence completion, true/false, MCQs'

Subjective Questions-The subjective type will include very short answer (1-2 lines), short answer (one paragraph), essay type with restricted response, and essay type with extended response

Internal assessment- any two or more of the given methods (Surprise Tests, one sentence summary, classroom assignments, homework assignments, term paper).

Item	Practical Note book and continuous evaluation	Synopsis	Performance	Viva voce
Marks	40	10	20	30

Evaluation Criteria for Practical

Dissertation Semester)	Propo	osal (Third	Dissertation	ı (Four	th Semester)
	Marks	Evaluation		Mark s	Evaluation
Supervisor	50	Dissertation proposal and presentation	Supervisor	50	Continuous assessment (regularity in work, mid-term evaluation) dissertation report, presentation, final viva-voce
HoD and senior-most faculty of the department	50	Dissertation proposal and presentation	External expert, HoD and senior- most faculty of the departmen t	50	Dissertation report (30), presentation (10), final viva-voce (10)

Evaluation Criteria for Dissertation

Evaluation pattern similar to fourth semester dissertation will apply for internship where supervisor will award 50% marks and external co-supervisor, HoD and senior-most faculty will award 50% marks.

Semester 1 Course Title: Organic Chemistry-I

Paper Code: CMC.506

Course Hours: 45h

Learning Outcomes:

After completing this course, the learner will be able to:

CLO1: Describe and understand basic chemistry of elimination and addition reactions

Р

0

3 0

Credits

3

CLO2: Describe disconnection approaches applied on synthetic strategies and mechanism prediction.

CLO3: Describe nomenclature and synthetic methodologies of heterocyclic systems

Course Contents

Units/Hours	Content	Mapping with course learning outcomes
Unit 1	Basic Aspects of Organic Chemistry: Organic	CLO1
10 Hours	intermediates: Carbocations, carbanions, free radicals, carbenes and nitrenes. Their method of formation, stability and synthetic applications. Types of reaction mechanisms and methods of	

Unit 2 10 Hours	 determining them, Detailed knowledge regarding the reactions, mechanisms and their relative reactivity and orientations. Exercise: Learner will be engaged in Molecular models to explain the stability of organic intermediates Addition reactions a) Nucleophilic uni- and bimolecular reactions (SN1 and SN2) b) Elimination reactions (E1 & E2; Hoffman & Saytzeff's rule) c) Rearrangement reaction 	CLO1
	Exercise: Learner will be engaged in Molecular models to explain the stereochemistry in elimination reactions	
Unit 3 10 Hours	Synthetic methodologies: Synthon, Synthetic equivalent, Functional group interconversion (FGI), Functional group addition, Functional group elimination, Criteria for selection of target, Linear and convergent synthesis, Retrosynthetic analysis and synthesis involving chemoselectivity, Regioselectivity, Reversal of Polarity (Umpolung), Synthesis of cyclic molecules, Strategic bond: Criteria for disconnection of strategic bonds, Importance of the order of events in organic synthesis. One group and two group C-X disconnections in 1,2- , 1,3-, 1,4 & 1,5- difunctional compounds, One group C-C disconnections, alcohol and carbonyl compounds, regioselectivity, alkene synthesis, use of acetylenes and aliphatic nitro compounds in organic synthesis, Two group C-C disconnections, Diels-Alder reaction, 1,3- difunctionalised compounds, Control in carbonyl condensation, 1,5-difunctionalised compounds. Exercise: Learner will be engaged in Group discussion to explain disconnection	CLO2
Unit 4	Heterocyclic chemistry: Replacement and	CLO3
15 Hours	systematic nomenclature (Hantzsch-Widman	

Suggested Readings:

1. Clayden, J., Greeves, N., Warren, S., Wothers, P. (2012). Organic chemistry Organic Chemistry Oxford press.

2.

inar, I.L., (2012). Organic Chemistry Vol. 1, Pearson Education, UK.

F

3. Mc Murry J., Organic Chemistry, Asian Book Pvt. Ltd, New Delhi

4. Smith, M. B. (2013). *March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*. John Wiley & Sons.

5. Ahluwalia, V. K., and Parasar R. K., (2011). Organic Reaction *Mechanism*, Narosa Publishing House (P) Ltd., New Delhi-110002.

6. Bansal, R. K., (2010). *A text book of Organic Chemistry*, New Age Inrternational (P) Ltd., New Delhi.

7. Bansal R.K., (2010). *Organic Reaction Mechanism*, New Age International (P) Ltd., New Delhi.

8. Kalsi, P.S., (2010). *Organic Reactions and Their Mechanisms*. New Age International Pub., New Delhi.

9. Kalsi, P.S., (2010). *Stereochemistry: Conformation and Mechanism*, New Age International (p) Ltd. New Delhi.

10. Morrison, R.T., Boyd, R.N. (2011). *Organic Chemistry*, Prentice- Hall of India, New Delhi.

11. Mukherjee, S.M. Singh, S.P., (2009). *Reaction Mechanism in Organic Chemistry*. Macmillan India Ltd., New Delhi.

12. Eliel, E. L., & Wilen, S. H. (2008). *Stereochemistry of organic compounds*. John Wiley & Sons.

13. Carey, F. A., Guiliano, R. M. (2012). Organic Chemistry. McGraw Hill.

14. Kofie, W., Caddick, S. (2016). *Problems in Advanced Organic Chemistry*. Auris Publishing.

15. Solomons, T. W. G., Fryhle, C. B., Snyder, S. A. (2017). Solomons' Organic Chemistry. John Willey & Sons.

16. Acheson, R.M. (1976). An Introduction to the Chemistry of Heterocyclic Compounds, Wiley India Pvt. Ltd.

17. Gupta R.R., Kumar M., Gupta V. (2010). *Heterocyclic Chemistry-II Five Membered Heterocycles Vol. 1-3*, Springer Verlag, India.

18. Warren, S., (2010). Organic Synthesis: The Synthon Approach. John Wiley & Sons, New York,

19. Warren, S., (2010). *Designing Organic Synthesis: A Disconnection Approach*. John Wiley & Sons, New York.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Team teaching
- Tutorial
- Self-learning

Transaction Mode

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Organic Synthesis –I (Practical)

L	Т	Р	Credits
0	0	4	2

Paper Code: CMC 507 Course Hours: 60h

Learning Outcomes:

After completing this course, the learner will be able to:

CLO1: Interpret stereochemistry of organic compounds

CLO2: Explain the handling, storage and disposal of hazardous chemicals and their Material safety data sheets (MSDS)

CLO3: Monitor the progress of chemical reactions by thin layer chromatography CLO4: Purify a given organic compound through crystallization, fractional distillation or column chromatography

Course	Content

Practical	Content/Title	Mapping course learning	with
1.	Awareness to various glassware and plasticwares used in the organic synthesis.	CLO1	

2.	Demonstration of Stereochemical aspects of the compounds through molecular models	CLO1
3.	Awareness to handling, storage and disposal of hazardous chemicals and their Material safety data sheets (MSDS)	CLO2
4.	Thin layer chromatography: Monitoring the progress of chemical reactions, identification of unknown organic compounds by comparing the R _f values of known standards, preparative TLC for separation of mixtures	CLO3
5.	Purification of a given organic compound through crystallization, fractional distillation or column chromatography	CLO4
6.	 Organic Synthesis: Single or multi- steps synthesis of organic compounds. Aspects such as conversion, yield, selectivity, effluent treatment, atom economy, etc. should be paid attention. TLC should be used to monitor the reaction. (attempt any five) a) Synthesis of an anticancer stilbene via Wittig reaction b) Synthesis of chalcones via Claisen-Schmidt condensation. c) Preparation of vanillyl alcohol from vanillin d) Reduction of 3-nitroacetophone using NaBH₄/LiAlH₄ e) Preparation of bromohydrin from methylstyrene f) Preparation of aniline from nitrobenzene g) Synthesis of ethyl <i>N</i>-butyl acetoacetate by A.E.E. condensation h) Cannizzaro reaction: 4-chlorobenzaldehyde as substrate. i) Preparation of Iodoxybenzoic acid (IBX) and its application in oxidation. g) Preparation of pyridine chlorochromate (PCC) and its application in oxidation. k) Multistep synthesis of phenytoin. 	CLO4

Suggested Readings:

1. Adams, R., Johnson, J.R., Wilcox, C.F. (1970). Laboratory Experiments in Organic Chemistry, The Macmillan Limited, London.

2. Mann, F. G. (2009). *Practical Organic Chemistry*. Pearson Education India.

3. Pasto, D.P., Johnson, C., Miller, M. (2010). *Experiments and Techniques in Organic Chemistry*, Prentice Hall.

4. Roberts, R.M., Gilbert, J.C., Rodewald, L.B., Wingrove, A.S. (1969). *An Introduction to Modern Experimental Organic Chemistry*, Ranehart and Winston Inc., New York.

5. Vogel, A.I. (latest edition). *Text Book of Practical Organic Chemistry*, Pearson

6. Williamson, K.L., Health, D.C. (1999). *Macroscale and Microscale Organic Experiments*, *Heath*, D. C & Co., Lexington, MA.

7. Armarego, W. L., & Chai, C. (2012). *Purification of Laboratory Chemicals*. Butterworth-Heinemann.

8. Young, J. A. (Ed.). (1991). Improving Safety in the Cemical Laboratory: a Practical Guide. Wiley.

9. Zercher, C. A. (2010). *Organic Syntheses*. John Wiley & Sons.

10. Leonard, J., Lygo, B., Procter, G. (2013). Advanced Practical Organic Chemistry. CRC Press.

The following are some of the modes of classroom transaction

- Experimentation
- Group discussion
- Demonstration
- Self-learning

Transaction Mode

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Modern Spectral & Chromatographic L Techniques

L	Т	P	Credits
3	0	0	3

Paper Code: CMC.508 Course Hours: 45h

Learning Outcomes

After completing this course, the learner will be able to: CLO1: Conceptualize general principle and theory of UV-Vis, IR and spectroflourimetry CLO2: Describe the concept and instrumentation of NMR and Mass techniques

CLO2: Describe the concept and instrumentation of NMR and Mass techniques CLO3: Separate different constituents of mixture by chromatographic techniques CLO4: Explain the Principle, thermal transitions and Instrumentation of DSC, DTA and TGA

Course Content

Units/Hours	Content	Mapping
		with course
Unit I	UV-Visible spectroscopy	CLO1
12 Hours	Introduction, Theory, Laws, Instrumentation	
	associated with UV-Visible spectroscopy, Choice of	
	Solvents and solvent effect and Applications of UV-	
	spectroscopy.	
	IR spectroscopy	
	Theory, Modes of Molecular vibrations, Sample	
	Transform IR Spectrometer Factors affecting	
	vibrational frequencies and applications of IR	
	spectroscopy, Data Interpretation, Theory of NIR.	
	Spectroflourimetry	
	fluorescence, Ouenchers, Applications of	
	fluorescence spectrophotometer, Instrumentation	
	The second suit he second here the second	
	training to different instruments like UV. IR and	
	spectroflourimetry.	
Unit 2	NMR spectroscopy	CLO2
12 Hours	Quantum numbers and their role in NMR, Principle,	
	Instrumentation, Solvent requirement in NMR,	
	Relaxation process, NMR signals in various	
	chemical shift. Spin-Spin coupling. Coupling	
	constant, Nuclear magnetic double resonance, Brief	
	outline of principles of FT-NMR and ¹³ C NMR,	
	Applications of NMR spectroscopy	
	Mass Spectroscopy	
	• Principle, Theory, Instrumentation of Mass	
	Spectroscopy, Different types of ionization like	
	APCI, ESI, APPI Analyzers of Ouadrupole and	
	Time of Flight, Mass fragmentation and its rules,	
	Meta stable ions, Isotopic peaks and Applications	
	or mass spectroscopy.	
	Exercise: Learner will be provided NMR and mass	
	spectra for the characterization of compounds.	

Unit 3	Chromatography	CLO3
11 Hours	Principle, apparatus, instrumentation,	
	chromatographic parameters, factors affecting	
	resolution, isolation of drug from excipients, data	
	interpretation and applications of the following: Thin	
	Layer chromatography, High Performance Thin Layer	
	Chromatography, Ion exchange chromatography,	
	Column chromatography, Gas chromatography, High	
	Performance Liquid chromatography, Ultra High-	
	Performance Liquid chromatography, Affinity	
	chromatography, Gel Chromatography	
	Exercise: Learner will be provided experience of	
	chromatography by using different techniques like	
	TLC, Column, HPLC, HPTLC and GC.	
Unit 4	Thermal Techniques	CLO4
10 Hours	Principle, thermal transitions and Instrumentation	
	(Heat flux and power-compensation and designs),	
	Modulated DSC, Hyper DSC, experimental	
	parameters (sample preparation, experimental	
	conditions, calibration, heating and cooling rates,	
	resolution, source of errors) and their influence,	
	advantage and disadvantages, pharmaceutical	
	applications. Differential Thermal Analysis (DTA):	
	Principle, instrumentation and advantage and	
	disadvantages, pharmaceutical applications,	
	derivative differential thermal analysis (DDTA). TGA:	
	Principle, instrumentation, factors affecting results,	
	advantage and disadvantages, pharmaceutical	
	applications	
	Exercise: Learner will be provided Web based	
	learning to explain thermal techniques	

Suggested readings

1. Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). *Spectrometric Identification of Organic Compounds.* John Wiley & Sons.

2. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2018). Principles of Instrumental Analysis. Singapore: Cengage Learning Asia Pte Ltd.

3. Willard, H. H. (2012). Instrumental methods of analysis. New Delhi: CBS.

4. Beckett, A. H., & Stenlake, J. B. (Eds.). (1988). *Practical Pharmaceutical Chemistry: Part II*, A&C Black.

5. Kemp, W. (1991). Organic Spectroscopy (pp. 42-51). London: Macmillan.

6. Sethi, P. D. (1985). *Quantitative Analysis of Drugs in Pharmaceutical Formulations*. Unique Publishers.

7. Munson, J. W. (Ed.). (1984). *Pharmaceutical Analysis: Modern Methods* (Vol. 11). CRC Press.

8. Kalsi, P. S. (2007). *Spectroscopy of Organic Compounds*. New Age International.

9. Connors, K. A. (2007). A Textbook of Pharmaceutical Analysis. John Wiley & Sons.

10. McHale, J. L. (2017). Molecular Spectroscopy. CRC Press.

11. Kromidas, S. (2017). *The HPLC Expert Possibilities and Limitations of Modern High Performance Liquid Chromatography*. John Wiley and Sons.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Tutorial
- Self-learning

Transaction Mode

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Spectral Analysis (Practical)

L	Т	Р	Credits
0	0	4	2

Paper Code: CMC.509 Course Hours: 60h

Learning Outcomes

After completing this course, the learner will be able to:

CLO1: Develop knowledge skills and understanding of structure elucidation of unknown compounds *via* spectral interpretation of IR, UV CLO2: Develop knowledge skills and understanding of structure elucidation of unknown compounds *via* spectral interpretation of ¹H, ¹³C NMR, Mass CLO3: Perform column, TLC, HPLC and GC-MS based experiments CLO4: Develop knowledge skills and understanding of structure elucidation of unknown compounds *via* spectral interpretation of ¹H, ¹³C NMR, Mass **CLO4**: Develop knowledge skills and understanding of structure elucidation of unknown compounds *via* spectral interpretation of ¹H, ¹³C NMR, UV, IR, Mass **Course content**

Practical	Content/Title	Mapping with course learning outcome
1.	Estimation of elements and functional groups in organic natural compounds	CLO1
2.	Analysis of organic compounds by UV Vis spectrophotometer	CLO1
3.	Experiments based on Column chromatography	CLO3
4.	Experiments based on HPLC	CLO3
5.	Experiments based on Gas Chromatography	CLO3
6.	Characterization of organic compounds using TLC, melting point, ¹ H, ¹³ C NMR, IR, UV and Mass.	CLO2, CLO4
7.	Isolation, characterization like melting point, mixed melting point, molecular weight determination, functional group analysis, co-chromatographic technique for identification of isolated compounds and interpretation of UV and IR data	CLO1, CLO3

Suggested Readings

1. Adams, R., Johnson, J.R., Wilcox, C.F. (1970). Laboratory Experiments in Organic Chemistry, The Macmilan Limited, London.

2. Mann and Saunders. (2009). Practical Organic Chemistry, Pearson.

3. Pasto, D.P., Johnson, C., Miller, M. (2010). *Experiments and Techniques in Organic Chemistry*, Prentice Hall.

4. Roberts, R.M.; Gilbert, J.C.; Rodewald, L.B.; Wingrove, A.S. (1969). *An introduction to Modern Experimental Organic Chemistry*, Ranehart and Winston Inc., New York.

5. Vogel, A.I. (latest edition). Text Book of Practical Organic Chemistry, Pearson

6. Williamson, K.L., Health, D.C. (1999). *Macroscale and Microscale Organic Experiments*, *Heath*, *D.C* and Co., Lexington, MA.

7. Armarego, W. L., & Chai, C. (2012). *Purification of Laboratory Chemicals*. Butterworth-Heinemann.

8. Young, J. A. (Ed.). (Latest Edition). *Improving Safety in the Chemical Laboratory: a Practical Guide*. Wiley.

9. Findeisen, M., (2013). 50 And More Essential NMR Experiments: A Detailed Guide. John Willey & Sons.

10. Kromidas, S. (2017). *The Hplc Expert Possibilities and Limitations of Modern High Performance Liquid Chromatography*. John Wiley and Sons.

The following are some of the modes of classroom transaction

- Experimentation
- Group discussion
- Demonstration

Transaction Mode

- YouTube
- PPT
- Google meet

Course Title: Medicinal Chemistry-I Paper Code: CMC.510 Course Hours: 45h

L	Т	Р	Credits
3	0	0	3

Learning Outcomes

After completing this course, the learner will be able to: CLO1: Interpret basics concepts of drugs, their effects and screening. CLO2: Describe drugs interaction with various types of enzymes and receptors CLO3: Conceptualize the process of drug discovery and its progress **Course Content**

Units/Hours	Content	Mappi with learni	ng course ng me
		outcol	me

		07.01
Unit 1	History of drug discovery Introduction, Drug	CLO1
10 Hours	discoveries, Recent trends in drug discovery,	
	Enzymes as drug targets, Membrane transporters as	
	drug targets, Voltage-gated ion channels as drug	
	targets	
	Francisco I company will be approved in success	
	Exercise: Learner will be engaged in group	
	discussion to explain history of drug discovery	
Unit 2	Drug discovery:	CLO2
11 Hours	Stages of drug discovery, lead discovery;	
	identification validation and diversity of drug	
	targets	
	Biological drug targets	
	Decenters trace binding and activation theories of	
	Receptors, types, binding and activation, theories of	
	drug receptor interaction, drug receptor interactions,	
	agonist vs antagonists, artificial enzymes.	
	Measurement and expression of drug effects	
	Introduction, <i>In-vitro</i> experiments, <i>Ex-vivo</i>	
	experiments, In-vivo experiments.	
	Exercise: Learner will be explained about drug	
	interaction and target through molecular modeling	
	studies	
Unit 3	Prodrug Design and Analog design	CLO3
12 Hours	Prodrug design	
	Basic concept, Carrier linked prodrugs/	
	Bioprecursors. Prodrugs of functional group.	
	Prodrugs to improve patient acceptability Drug	
	solubility Drug absorption and distribution site	
	specific drug delivery and sustained drug action	
	Detionale of medicate decimal	
	Rationale of prodrug design and practical	
	consideration of prodrug design.	
	Combating drug resistance	
	Causes for drug resistance, strategies to combat drug	
	resistance in antibiotics and anticancer therapy,	
	Genetic principles of drug resistance.	
	Analog Design	
	Introduction, Classical & Non classical, Bioisosteric	
	replacement strategies, rigid analogs, alteration of	
	consideration of prodrug design. Combating drug resistance Causes for drug resistance, strategies to combat drug resistance in antibiotics and anticancer therapy, Genetic principles of drug resistance.	
	Introduction, Classical & Non classical, Bioisosteric	
	replacement strategies, rigid analogs, alteration of	

	 chain branching, changes in ring size, ring position isomers, design of stereo isomers and geometric isomers, fragments of a lead molecule, variation in inter atomic distance. Exercise: Learner will be engaged in Web based training to familiarize with prodrug and analog design 	
Unit 4 12 Hoursa) Medicinal chemistry aspects of the following of drugs, Systematic study, SAR, Mechanism o action and synthesis of new generation molecu following class of drugs: b). Anti-hypertensive drugs, Psychoactive Anticonvulsant drugs, H1 & H2 receptor antag COX1 & COX2 inhibitors, Adrenergic & Choli agents, Antineoplastic and Antiviral agents. c) Stereochemistry and Drug action: Pacification		CLO3
	stereo selectivity is a pre-requisite for evolution. Role of chirality in selective and specific therapeutic agents. Case studies, enantioselectivity in drug adsorption, metabolism, distribution and elimination. Exercise: Learner will be engaged in Group discussion to explain SAR, Mechanism of action and synthesis of drugs	

Suggested Readings:

1. Foye, W. C. (2019). *Principles of Medicinal Chemistry*, Publisher: Wolters Kluwer.

2. King, F. D. (2006). *Medicinal Chemistry Principles and Practice*, Royal Society of Chemistry.

3. Nogardy, T. and Weaver D F (2005). *Medicinal Chemistry: A Molecular and Biochemical Approach*, Oxford University Press.

4. Patrick, G.L. (2017). *An Introduction to Medicinal Chemistry*, Publisher: Oxford university Press, UK.

5. Singh, H., Kapoor, V.K. *Medicinal and Pharmaceutical Chemistry* Vallabh Prakashan, Delhi.

6. Smith, H.J. (2006). *Introduction to the Principles of Drug Design and Action*, Taylor and Francis.

7. Wermuth, C.G. (2009). *The Practice of Medicinal Chemistry*, Academic Press (Elsevier).

8. Wolff, M E, Ed., (Latest Edition). *Burger's Medicinal Chemistry and Drug Discovery* John Wiley and Sons, New York.

9. Ferrant, E., (2011). *New Synthetic Technologies In Medicinal Chemistry*. Royal Chemical Society.

10. Medicinal Chemistry by Burger, Vol I –VI.

11. Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical Chemistry, 12th Edition, Lppincott Williams & Wilkins, Woltess Kluwer (India) Pvt. Ltd, New Delhi.

12. Comprehensive Medicinal Chemistry – Corwin and Hansch.

13. Computational and structural approaches to drug design edited by Robert M Stroud and Janet. F Moore

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Team teaching

Transaction Mode

- Molecular Models
- PPT
- YouTube
- Software for *In silico* study
- Google meet

Course Title: Chemistry of Natural Products

Paper Code: CMC.511 Course Hours: 45h

L	Т	Р	Credits
3	0	0	3

Learning Outcomes

After completing this course, the learner will be able to:

CLO1: Describe categories, synthesis and biosynthesis of terpenoids

CLO2: Conceptualize the nomenclature, synthesis and structure of alkaloids CLO3: Explain the occurrence, nomenclature and structural investigation of

steroids

CLO4: Explain the structural investigation of different natural products

Course Content

Units/Hours	Content	Mapping
		with course

		learning
		outcome
Unit 1 12 Hours	Terpenoids and carotenoids: Classification, nomenclature, occurrence, isolation, general methods of structure determination, isoprene rule. Structure	CLO1
	determination, stereochemistry, biosynthesis and synthesis of the following representative molecules: Geraniol, Menthol and β -Carotene Exercise: Learner will be engaged in molecular	
	models to explain the structure and stereochemistry of terpenoids.	
Unit 2	Alkaloids: Definition, nomenclature and	CLO2
11 Hours	physiological action, occurrence, isolation, general methods of structure elucidation, degradation, classification based on nitrogen heterocyclic ring, role of alkaloids in plants. Structure, stereochemistry, synthesis and biosynthesis of the following: Ephedrine, Nicotine and Morphine Exercise: Learner will be able to explain chemical tests for the identification of plant alkaloids	
Unit 3	Steroids: Occurrence, nomenclature, basic skeleton	CLO3
10 Hours	and stereochemistry, Structure determination and synthesis of cholesterol, partial synthesis of Testosterone and Progesterone, Chemical tests for steroids Exercise: Learner will be engaged in molecular models to explain the structure and stereochemistry of steroids.	
Unit 4	Flavonoids: Introduction, isolation and purification	CLO4
12 Hours	of flavonoids, General methods of structural determination of flavonoids; Structural elucidation of quercetin Structural Characterization of natural compounds: Structural characterization of natural compounds using IR, ¹ HNMR, ¹³ CNMR and MS Spectroscopy of specific drugs e.g., Penicillin, Morphine, Camphor, Vit-D, Quercetin and Digitalis glycosides.	
	Exercise: Learner will be provided spectral data for	
	the identification of above-mentioned natural compounds.	

Suggested Readings

1. Bhat, S.V., Nagasampagi, B.A., Meenakshi, S. (2013). Natural Product Chemistry & Applications, Narosa Publishing House, New Delhi.

2. Bhat, S.V., Nagasampagi, B.A., Sivakumar, M. (2005), *Chemistry of Natural Products.* Narosa Publishing House, New Delhi.

3. Brahamchari, G. (2009). *Natural Product: Chemistry, Biochemistry and Pharmacology*. Narosa Publishing House, New Delhi.

4. Cseke, L.J. (2009). *Natural Products from plants*. CRC Press, Taylor and Francis, US.

5. Dewick, P.M. (2009). *Medicinal Natural Products: A Biosynthetic Approach*. Willey & Sons, UK.

6. Finar, I.L. (2006). Organic Chemistry: Stereochemistry and the Chemistry of Natural Products. Dorling Kindersley Pvt. Ltd., India.

7. Peterson, F., Amstutz, R. (2008). Natural Compounds as drugs. Birkhauser Verlay.

8. Thomson, R.H. (2008). The Chemistry of Natural Products, Springer.

9. Singh, J., Ali, S. M., Singh, J. (2010) Natural Products Chemistry. Pragati Books.

10. Xu, R., Ye, Y., Zhao, W., (2011). Introduction to Natural Products Chemistry. CRC Press.

11. Rehman, A., (2015). Studies in Natural Products Chemistry, Elsevier Books.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Tutorial

Transaction Mode

- PPT
- YouTube
- Google meet

Course Title: Basics of Drug Discovery

Paper Code: CMC.512 Course Hours: 45h

ſ	L	Т	P	Credits
	3	_	0	3

Learning outcome: Students who successfully complete this course will be able to CLO1: Apply the knowledge of drug-receptor interactions for understanding drug mechanism

CLO2: Utilize the knowledge of ligand interactions with the active site of receptor in novel drug design and discovery

CLO3: Apply the knowledge of QSAR for novel drug designing

CLO4: Apply the knowledge of combinatorial chemistry in synthesis

Course Content

Units/Hours	Content	Mapping
		with course

		learning
		outcome
Unit 1 11 Hours	Interactions of enzyme/receptor with drug molecules: Chirality and drug action; Covalent, ion- dipole, hydrogen bonding, C-H hydrogen bonding, dihydrogen bonding, van der waals interactions and the associated energies, Receptor & biological response, Drug-receptor interactions, receptor theories and drug action, Occupancy theory, rate theory, induced fit theory, macromolecular perturbation theory, activation-aggregation theory, Topological and stereochemical consideration.	CLO1, CLO2
	Theoretical Aspects of Drug Action : Drug distribution, Active transport, Passive transport, The Ferguson Principle Physicochemical Parameters and Pharmacological Activity-Solubility, Partition Coefficient, Surface Activity, pKa, Ionization, Stereochemical Factors, Bio-isosterism.	
	Exercise: Learner will be engaged in molecular modeling to explain drug interactions and online ADME calculation softer for determination of pharmacokinetic parameters.	
Unit 2 12 Hours	Enzyme kinetics in drug action: Mechanisms of enzyme catalysis, Electrostatic catalysis and desolvation, Covalent catalysis, acid-base catalysis, strain / distortion in enzyme catalysis, Coenzyme catalysis, Theories of enzyme inhibition and inactivation, Enzyme activation of drugs-prodrugs.	CLO1, CLO2
	Drug metabolism: Metabolic Processes- Phase-I (Oxidation, Reduction & Hydrolysis) and Phase-II (Glucuronide Conjugation, Acetylation, Methylation, Sulphate Conjugation, Conjugation with amino acids and Mercapturic acid formation), Routes of Elimination, Factors Affecting Metabolism–Genetic Factors, Physiological Factors, Pharmaceutical Factors, Drug Interactions.	
	Exercise: Learner will be engaged in group discussion about enzyme kinetics and drug metabolism	

Unit 3	SAR studies, Lead modification and Drug Design:	CLO3
12 Hours	Lead modification strategies; Bioisosterism, variation of alkyl substituents, chain homologation and branching, Variation of aromatic substituents, Extension of structure, Ring expansion or contraction, Ring variation, Variation in position of hetero atoms, Ring fusion, Simplification of the lead, Rigidification of lead; Discovery of oxaminquine, salbutamol, cimitidine and captopril. Structure- Activity Relationship studies in sulfa drugs, benzodiazepines, barbiturates, and taxol analogs. Principles of prodrug design, Serendipitious discovery of leads e.g. Penicillin and librium, sildenafil.	
	 In silico methods: Introduction to Quantitative Structure Activity Relationship (QSAR) studies. 2-D QSAR, QSAR parameters. 3-D QSAR, CoMFA and CoMSIA. Molecular docking, Pharmacophore mapping and virtual screening. Exercise: Learner will be provided web-based training to familiarize SAD and in ailing studies for 	
	drug design	
Unit 4 10 Hours	Combinatorial synthesis and chiral drugs: Introduction, Combinatorial approach, Combinatorial library, Solid phase synthesis, resins, linkers. Parallel synthesis; Haughton's tea bag procedure, Automated parallel synthesis, Mix and Split combinatorial synthesis, Structure determination of active compounds, Synthesis of heterocyclic combinatorial libraries, Analytical characterization of synthetic organic libraries.	CLO4
	Exercise: Learner will be engaged in web-based training to explain Combinatorial synthesis of chiral drugs.	

Suggested Readings:

1. Ellis, G.P., West, G. B. (1983). *Progress in Medicinal Chemistry Series*. Elsevier Science.

2. Foye, W.O.; Lemke, T. L.; Williams, D. A. (Latest Edition). *Principles of Medicinal Chemistry*, Indian Ed. Waverly, Pvt. Ltd. New Delhi.

3. Ganellin, C.R.; Roberts S. M., (1993). *Medicinal Chemistry: The Role of Organic Chemistry in Drug Research*. Publisher: Academics Press Inc.

4. Kadam, Mahadik, Bothara (2010). *Principle of Medicinal Chemistry (Volume I & II)*, Nirali publication

5. Kulkarni, V. M., Bothra, K.G., (2008). Drug Design, Nirali Publication.

6. Lawton, G., Witty, D.R. (2011). *Progress in Medicinal Chemistry Series. Volume* 50.

7. Lednicer D., Laster A. M. (1998). *The Organic Chemistry of Drug Synthesis(3 Volumes)* John Wiley & Sons.

8. Lednicer, D. (2008). *Strategies for Organic Drug Synthesis and Design. (7 volume)* Publisher: John Wiley & Sons.

9. Lemke, T.L., Williams, D.A. (2012). *Foye's Principles of Medicinal Chemistry*. 7th edition.

10. Silverman R.B., (2014). Organic Chemistry of Drug Design and Drug Action, Publisher: Elsevier.

Wilson, C.O.; Block, J.H.; Gisvold, O.; Beale, J. M. Wilson and Gisvold's (2003) *Textbook of Organic Medicinal and Pharmaceutical Chemistry*. Lippincott Willaiams & Wikins.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Team teaching
- Tutorial
- Self-learning

Transaction Mode

- **PPT**
- YouTube
- Google drive
- Google meet

Elective courses

Course Title: Current Trends in Organic Synthesis Paper Code: CMC.513 Course Hours: 45h

L	Т	Р	Credits
3	0	0	3

Learning Outcomes:

After completing this course, the learner will be able to:

CLO1: Explain the role of free radicals in chemical transformation CLO2: Conceptualize the importance of organometallic compounds and their application CLO3: Apply the knowledge of various reagents for the synthesis of target molecules and will also acquire knowledge of some important C-C, and C-N bond formation reactions

	_	
Units/Hours	Content	Mapping
		with course
		learning
		outcome
Unit 1	Free radical reactions	CLO1
11 Hours	Types of free radical reactions, free radical substitution mechanism at an aromatic substrate, neighbouring group assistance, Reactivity for aliphatic and aromatic substrates at a bridgehead, Reactivity in the attacking radicals, the effect of solvents on reactivity, Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, auto- oxidation. Coupling of alkynes and arylation of aromatic compounds by diazonium salts. Sandmeyer reaction, Free Radical Rearrangement, Hunsdiecker reaction	
	Exercise: Learner will be engaged in Group	
IInit 2	Organometallic compounds	CI 02
	Organohoranes: Preparation of Organohornaes viz	
12 Hours	hydroboratios. Treparation of Organobornaes viz hydroboration with BH3-THF, dicylohexyl borane, disiamyl borane, theryl borane, 9-BBN and disopincamphlyel borne, functional group transformations of Organo boranes-Oxidation, protonolysis and rearrangements. Formation of carbon-carbon-bonds vizorgano boranes carbonylation. Grignard reagents, Organo lithium, Organo zinc, Organo cadmium and Organo Copper Compounds, Organo silicon compounds for organic synthesis, Organopalladium and organostannous (Applications in coupling reactions). Exercise: Learner will be used web-based learning to understand organometallic compounds and their	
Unit 3	Reagents in organic synthesis:	CL03
10 Hours	Reagents in organic synthesis.	
IZ NUUIS		

Course Content

	Gilman'sreagent Lithiumdiisonronylamide(LDA)	
	Dicyclohexyl Carbodiimide (DDC) 1 3-Dithiane	
	(Umpolungreagent) Trimethylsilyliodide	
	Bakersveast DDO Lead tetraacetate Prevost	
	Hydroxylation Wilkinsion's catalyst	
	Phasetransfercatalysts: OuaternaryammoniumandP	
	hosphoniumsalts Crownethers Merifield resin	
	Fenton's reagents Ziegler-Natta catalyst Lawson	
	reagents K-selecteride and L-selecteride Sodium	
	cvanoborohydride 9-BBN IBX Manganese dioxide	
	Fetizon reagent Dioxiranes Ceric ammonium	
	nitrate Tebbe reagent Corey-Nicolaou reagent	
	Mosher's reagent, use of Os. Ru, and Tl reagents.	
	Exercise: Learner will be used web-based learning to	
	understand the applications of reagents in organic	
	synthesis	
Unit 4	New synthetic reactions: Baylis-Hillman reaction,	CLO3
10 Hours	Biginelli reaction, Mukaiyama aldol reaction,	
	Mitsunobu reaction, McMurrey reaction, Julia-	
	Lythgoe olefination, and Peterson's stereoselective	
	olefination, Buchwald-Hartwig coupling,	
	Eishenmosher-Tanabe fragmentation and Shapiro	
	reaction, Stork-enamine reaction Aza-Cope, Aza-	
	Wittig reaction, BINAL and BINAP assisted reactions.	
	Ugi reaction, Robinson-Gabriel synthesis, Strecker	
	amino acid synthesis Vilsmeier–Haack reaction,	
	Wohl-Ziegler reaction.	
	Exercise: Molecular models will be used to explain	
	the stereochemistry of new synthetic reactions.	

Suggested readings:

1. Finar, I.L., (2012). Organic Chemistry Vol. 1, Pearson Education, UK.

^{2.} Finar, I.L., (2012). Organic Chemsitry Vol. 2: Stereochemistry and The Chemistry of Natural Products, Pearson Education, UK.

3. Fleming (1999). *Pericyclic Reactions*, Oxford University Press, Oxford.

^{4.} Fleming (2010). *Molecular Orbitals and Organic Chemical Reactions*, John Wiley & Sons.

^{5.} Jie Jack Li, (2009). *Name Reactions: A collection of detailed Reaction Mechanisim*, Publisher: Springer-verlag.

^{6.} Kalsi, P.S., (2010). *Organic Reactions and Their Mechanisms*, New Age International Pub., New Delhi.

7. Kalsi, P.S., (2010). *Stereochemistry: Conformation and Mechanism*, New Age International (p) Ltd., New Delhi.

^{8.} Lowry, T.H., Richardson K.S., (1998). *Mechanism and Theory in Organic Chemistry*, Addison-Wesley Longman Inc.

9. Mc Murry, J., Organic Chemistry, Asian Book Pvt Ltd, New Delhi

^{10.} Morrison, R.T., Boyd, R.N., (2011). *Organic Chemistry*, Prentice- Hall of India, New Delhi.

^{11.} Mukherjee, S.M., Singh, S.P., (2009). *Reaction Mechanism in Organic Chemistry*, Macmillan India Ltd., New Delhi.

^{12.} Reinhard Bruckner, (2001). Advanced Organic Chemistry: Reaction Mechanism, Academic Press.

^{13.} Smith, M. B. (2013). *March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*. John Wiley & Sons.

^{14.} Solomn, C.W.G, Fryble, C.B. (2003). *Organic Chemistry*, John Wiley & Sons, Inc., New York.

^{15.} Sykes, P., (1997). *A Guide Book to Mechanism in Organic Chemistry*, Prentice Hall, US.

^{16.} W. Carruthers, (2004). Some Modern Methods of Organic Synthesis, Cambridge Uni. Press, UK.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration

Transaction Mode

- PPT
- YouTube
- Google meet

Course Title: Quantum Chemistry

L	Т	Р	Credits
3	0	0	3

Paper Code: CMC.514 Course Hours: 45h

Learning Outcomes

After completing this course, the learner will be able to:

CLO1: Describe quantum chemical description of chemical bonding, reactivity and their applications in molecular spectroscopy and inorganic chemistry

CLO2: Explain Electronic and Hamiltonian operators for molecules.

CLO3: Utilize Quantum chemical description of angular momentum and term symbols for a one and many-electron systems.

CLO4: Conceptualize Born-Oppenheimer approximation, the Pauli principle, Hund's rules, Hückel theory and the variation principle

Course Content

Units/Hours	Content	Mapping with course learning outcome
Unit 1 12 Hours	 Fundamental Background: Postulates of quantum mechanics, Eigen values and Eigen functions, operators, hermitian and unitary operators, some important theorems. Schrodinger equation-particle in a box (1D, 3D) and its application, potential energy barrier and tunneling effect, one-dimensional harmonic oscillator and rigid rotor, Particle in a Ring, Hydrogen Atom. Exercise: Learner will apply Schrodinger equation for particle in 1D and 3D 	CLO1, CLO2
Unit 2 10 Hours	Approximate Methods: Perturbation theory for non- degenerate and degenerate states and its applications, Variation theorem and its application. Exercise: Web based approach will be used to explain perturbation and variation theory	CLO1
Unit 3 12 Hours	 Angular Momentum: Ordinary angular momentum, Eigen functions and Eigen values for angular momentum, Addition of angular momenta, Spin, Anti-symmetry and Pauli exclusion principle. Electronic Structure of Atoms: Electronic configuration, Russell-Saunders terms and Coupling 	CLO3
	Schemes, Magnetic Effects: Spin-orbit Coupling and Zeeman Splitting, the self-consistent field method, Hartree-Fock SCF method for molecules. Exercise: Learner will apply Angular momentum and Pauli exclusion principle to solve numerical problems	
Unit 4 11 Hours	Born-Oppenheimer Approximation: LCAO-MO and VB treatments of the H_2^+ and H_2 . Hybridization and	CLO4

valence MOs of H ₂ O and NH ₃ . Huckel Theory of	
acyclic and cyclic conjugated systems, Bond Order	
and Charge Density Calculations.	
Exercise: Learner will be engaged in web-based learning to explain Born-Oppenhelmer approximation concept	

Suggested Readings:

- 1. Levine, I.N. Quantum Chemistry, 2016, Pearson Educ., Inc. New Delhi.
- 2. Chandra, A.K. 1994, Introductory Quantum Chemistry, Tata McGraw Hill.
- 3. Prasad, R.K., 2009, *Quantum Chemistry*, New Age Science.
- 4. Mc Quarrie, D. A. (2011). *Quantum Chemistry*. Viva Publishers.
- 5. Murrell, J.N. Kettle S.F.A. and Tedder, J. M. Valence Theory, 1965, John Wiley.
- 6. Lowe, J. P. and Peterson, K. 2006, *Quantum Chemistry*, Academic Press.

The following are some of the modes of classroom transaction

- Demonstration
- Group discussion
- Lecture
- Self-learning

Transaction Mode

- Google meet
- PPT
- YouTube

Semester –II

Course Title: Organic Chemistry-II Paper Code: CMC.521 Course Hours: 45h

	L	Т	Р	Credits
ſ	3	0	0	3

Learning Outcomes

After completing this course, the learner will be able to:

CLO1: Interpret the stereochemistry, spatial arrangement of atoms/groups and apply it on the course of reactions and mechanism prediction.

CLO2: Explain the mechanism and applications of peptide chemistry

CLO3: Apply principles of photochemistry and pericyclic reactions in various chemical transformations

CLO4: Apply principles of catalysis in various useful organic transformations

Course Content

Units/Hours	Content	Mapping
		with course
		learning
		outcome
Unit 1	Stereochemistry: IUPAC nomenclature of organic	CLO1
12 Hours	molecules, Elements of symmetry, Chirality,	
	Projection formulae [Fly wedge, Fischer, Newman and	
	Saw horse], Configurational and conformational	
	isomerism in acyclic and cyclic compounds;	
	Stereogenicity, stereoselectivity, enantioselectivity,	
	diastereoselectivity, racemic mixture and their	
	resolution, Configurational notations of simple	
	molecules, D/L, R/S, E/Z and $cis/trans$	
	configurational notations, Threo and erythro	
	isomers, Methods of resolution, Optical purity,	
	Enantiotopic and diastereotopic atoms, groups and	
	faces, Stereospecific and stereoselective synthesis,	
	Asymmetric synthesis, Optical activity in the absence	
	of chiral carbon (bipnenyls, allenes and spiranes),	
	chirality due to helical shape, Stereochemistry of the	
	compounds containing introgen, suprior and	
	compounds such as evelopentane evelopevane	
	cyclohevanone derivatives decalins 1.2-: 1.3- 1.4-	
	disubstituted cyclohexane derivatives and D-	
	Glucose Effect of conformation on the course of rate	
	of reactions. Effect of conformation on reactivity.	
	Conformation of sugars, strain due to unavoidable	
	crowding.	
	Exercise: Learner will be engaged in Molecular	
	models and online modeling tools to explain the	
	stereochemistry of compounds	
Unit 2	Chemistry of peptides:	CLO2
11 Hours	a. Coupling reactions in peptide synthesis b. Principles of solid phase peptide synthesis, t-BOC and FMOC protocols, various solid supports and linkers: Activation procedures, peptide bond formation, deprotection and cleavage from resin, low and high HF cleavage protocols, formation of free peptides and peptide amides, purification and case studies, site-specific chemical modifications of peptides c. Segment and sequential strategies for solution phase peptide synthesis with any two case studies d. Side reactions in peptide synthesis: Deletion peptides, side 12 Hrs 89 reactions initiated by proton abstraction, protonation, overactivation and side reactions of individual amino acids.	
--------------------	---	------
	Exercise: Learner will be engaged in Group discussion to explain peptide chemistry and their reactions.	
Unit 3 10 Hours	Photochemistry: Franck-Condon principle, Jablonski diagram, Singlet and triplet states, Photosensitization, Quantum efficiency, Photochemistry of carbonyl compounds, Norrish type-I and type-II cleavages, Paterno-Buchi reaction, Photoreduction, Di π – methane rearrangement. Photochemistry of aromatic compounds, Photo-Fries reactions of anilides, Photo-Fries rearrangement, Barton reaction Singlet molecular oxygen reactions Exercise: Learner will be engaged in web-based learning to explain photochemical reactions Pericyclic Chemistry: Main features of pericyclic reactions, Classification of pericyclic reactions, Thermal and photochemical pericyclic reactions. Electrocyclic reactions: Conrotation and disrotation, Electrocyclic reactions. Explanation for the mechanism of electrocyclic reactions by (i) symmetry properties of HOMO of open chain partner (ii) Conservation of orbital symmetry and orbital symmetry correlation diagrams and (iii) Huckel- Mobius aromatic and antiaromatic transition state method. Examples of electrocyclic reactions. Cycloaddition reactions: Main features and π4 + π2 cycloadditions. Cycloreversions. Stereochemical	CLO3

	aspects in supra-supra, supra-antara, antara-supra and antara-antara $\pi 2 + \pi 2$ and $\pi 4 + \pi 2$ cycloadditions. Diels-Alder reaction. Woodward- Hoffmann Selection rules for cycloaddition reactions. Sigmatropic reactions: [1,j] and [i,j] shifts; Suprafacial and antarafacial shifts; Selection rules for [lj} shifts; Cope and Claisen rearrangements Exercise: Learner will be engaged in web-based learning to explain cycloaddition, electrocyclic and sigmatropic reactions.	
Unit 4	Catalysis: a. Types of catalysis, heterogeneous and	CLO4
12 Hours	homogeneous catalysis, advantages and	
	disadvantages b. Heterogeneous catalysis –	
	preparation, characterization, kinetics, supported	
	catalysts, catalyst deactivation and regeneration,	
	some examples of heterogeneous catalysis used in	
	synthesis of drugs. c. Homogenous catalysis,	
	hydrogenation, hydroformylation, hydrocyanation,	
	Wilkinson catalysts, chiral ligands and chiral	
	induction. Ziegler Natta catalysts, some examples of	
	homogenous catalysis used in synthesis of drugs d.	
	Transition-metal and Organo-catalysis in organic	
	synthesis: Metal-catalyzed reactions e. Biocatalysis:	
	Use of enzymes in organic synthesis, immobilized	
	enzymes/cells in organic reaction. f. Phase transfer	
	catalysis theory and applications	
	Exercise: Learner will be engaged in various	
	catalysis reactions used in some important organic	
	transformations of medicinal interests.	

1. Morrin Acheson, R. (2008) An Introduction to the Chemistry of heterocyclic compounds. Wiley India Pvt. Ltd.

2. Clayden, J., Greeves, N., Warren, S., Wothers, P. (2012). *Organic Chemistry*. Oxford press.

3. Ahluwalia, V. K., and Parasar R. K., (2011). *Organic Reaction Mechanism*, Narosa Publishing House (P) Ltd., India.

4. Bansal, R. K., (2012). *Organic Reaction Mechanism*, New Age International (P) Ltd., New Delhi.

5. Bansal, R. K., (2007). *A Text Book of Organic Chemistry*, New Age International (P) Ltd., New Delhi.

6. Bansal, R.K. (2010). *Heterocyclic Chemistry*, New Age International (P) Ltd., New Delhi.

7. Carey B. F. A., Sundberg R.J., (2007). *Advanced Organic Chemistry Part A and Part B, Springer.*

8. Finar, I. L., (2012). Organic Chemistry Vol. 1, Pearson Education, UK.

9. Gilchrist, T.L. (1997). *Heterocyclic Chemistry*, Longman, Prentice Hall, US.

10. Gupta R.R., Kumar M., Gupta V. (2010). *Heterocyclic Chemistry-II Five Membered Heterocycles*, Springer Verlag, India.

11. Joule, J.A., Mills, K. (2010). *Heterocyclic Chemistry*, Blackwell Publishers, New York.

12. Kalsi P. S., (2010). Organic Reactions and Their Mechanisms, New Age International Publication, New Delhi.

13. Lowry, T. H., Richardson K. S., (1998). *Mechanism and Theory in Organic Chemistry*, Addison-Wesley Longman Inc, US.

14. Morrison, R.T., Boyd R.N., (2011). *Organic Chemistry*, Prentice- Hall of India, New Delhi.

15. Mukherjee S. M., Singh S. P., (2009). *Reaction Mechanism in Organic Chemistry*, Macmillan India Ltd., New Delhi.

16. R. Katritzky, (2010). Handbook of Heterocyclic Chemistry Elsevier, UK.

17. Smith, M. B. (2013). March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley & Sons.

18. Sykes, P., (1997). A Guide Book to Mechanism in Organic Chemistry, Prentice Hall, US.

19. Norman, R.O.C.; Coxon, J.M. *Principles of Organic Synthesis*, Blackie Academic & Professional.

20. Warren, S., (2010). Organic Synthesis: The Synthon Approach. John Wiley & Sons, New York,

21. Warren, S., (2010). *Designing Organic Synthesis: A Disconnection Approach*. John Wiley & Sons, New York.

22. Corey E.J., Cheng Xue-Min, (1989) *The Logic of Chemical Synthesis*, Pubs: John Wiley & Sons,

23. Carey, F. A., Guiliano, R. M. (2012). Organic Chemistry. McGraw Hill.

24. Kofie, W., Caddick, S. (2016). *Problems in Advanced Organic Chemistry*. Auris Publishing.

25. Solomons, T. W. G., Fryhle, C. B., Snyder, S. A. (2017). *Solomons' Organic Chemistry*. John Willey & Sons.

26. Fleming (1999). *Pericyclic Reactions*, Oxford University Press, Oxford.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Team teaching

Transaction Mode

- PPT
- Google meet
- YouTube

Course Title: Organic Synthesis-II (Practical)

Paper Code: CMC.522 Course Hours: 60h

L	Т	P	Credits
0	0	4	2

Learning Outcomes

After completing this course, the learner will be able to:

CLO1: Differentiate mixture of *ortho* and *para* as well as cis/trans mixture by column chromatography

CLO2: Describe Multi-Step Synthesis of Organic Compounds

CLO3: Identify compounds *via* combined spectral interpretation of ¹H, ¹³C NMR, IR, UV and Mass along with 2-D NMR spectra.

Practical	Content/Title	Mapping with course learning outcome
1.	Separation and purification of organic compounds by column chromatography: Separation of mixture of <i>ortho</i> and <i>para</i> mixture and cis/trans mixture. The column chromatography should be monitored by TLC.	CLO1
2.	 Multi-Step Synthesis of Organic Compounds: The exercise should illustrate the use of organic reagents and may involve purification of the products by chromatographic techniques. (Any five) a) Synthesis of isoxazole derivatives via 1,3-dipolar cycloaddition. b) Synthesis of pyrazole derivatives from chalcones. c) Synthesis of an antihypertensive drug-propranolol via epoxide ring opening reaction. 	CLO2

	 d) Synthesis of Diltiazem (a calcium channel blocker) via Darzen condensation, a key step in its synthesis. e) Protection and deprotection of alcohols and amines. f) Preparation of Triphenyl Carbinol from Bromobenzene (Grignard's reaction) g) Preparation of allylic alcohols via Baylis-Hillman reaction using DABCO as a catalyst under neat condition and their characterization through various spectroscopic techniques. h) Preparation of homoallyl alcohols via Barbier type reaction under aqueous condition using Indium as a catalyst. i) Suzuki reaction of 3,4-dimethoxy phenyl boronic acid with aryl halides using Pd(PPh₃)₄ as a catalyst. 	
3.	Exercises on identification of compounds <i>via</i> combined spectral interpretation of ¹ H, ¹³ C NMR, IR, UV and Mass along with 2-D NMR spectra.	CLO3

1. Adams, R.; Johnson, J.R.; Wilcox, C.F. (1970). Laboratory Experiments in Organic Chemistry, The Macmilan Limited, London.

2. Mann and Saunders. (2009). *Practical organic chemistry*, Pearson.

3. Pasto, D.P., Johnson, C., Miller, M. (2010). *Experiments and Techniques in Organic Chemistry*, Prentice Hall.

4. Roberts, R.M.; Gilbert, J.C.; Rodewald, L.B.; Wingrove, A.S. (1969). *An introduction to Modern Experimental Organic Chemistry*, Ranehart and Winston Inc., New York.

5. Vogel, A.I. (Latest edition). Text book of practical organic chemistry, Pearson

6. Williamson, K.L., Health, D.C. (1999). *Macroscale and Microscale Organic Experiments, Heath, D. Cand Co.,Lexington, MA.*

7. Findeisen, M., (2013). 50 And More Essential NMR Experiments: A Detailed Guide. John Willey & Sons.

The following are some of the modes of classroom transaction

- Experimentation
- Group discussion
- Demonstration
- Self-learning

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Fundamentals of Computer Aided Drug Design

]	L	Т	P	Credits
	3	0	0	3

Paper Code: CMC.523 Course Hours: 45h

Learning outcome:

After completing this course, the learner will be able to:

- CLO1: Describe the role of CADD in drug discovery
- CLO2: Work with molecular modelling software's to design new drug molecules CLO3: Design and develop new drug like molecules

Units/Hours	Content	Mapping
		learning
		outcome
Unit 1	Introduction to Computer Aided Drug Design	CLO1
12 Hours	(CADD): History, different techniques and	
	applications. Quantitative Structure Activity	
	Relationships: Basics. History and development of	
	QSAR: Physiochemical parameters and methods to	
	calculate physiochemical parameters: Hammett	
	equation and electronic parameters (sigma),	
	lipoiphilicity effects and parameters (log P, pi-	
	substituent constant), steric effects (Taft steric and	
	MR parameters) Experimental and theoretical	
	approaches for the determination of these	
	physiochemical parameters. Hansch analysis, Free	
	Wilson analysis and relationship between them,	
	Advantages and disadvantages: Deriving 2D-QSAR	
	equations. 3D- QSAR approaches and contour map	

	 analysis. Statistical methods used in QSAR analysis and importance of statistical parameters. Exercise: Learner will be engaged in group discussion to explain 2D-QSAR, 3D-QSAR and importance of statistical parameters 	
Unit 2 11 Hours	 Molecular Modeling and Docking: a) Molecular and Quantum Mechanics in drug design. b) Energy Minimization Methods: comparison between global minimum conformation and bioactive conformation. c) Molecular docking and drug receptor interactions: rigid docking, flexible docking and extra-precision docking. Agents acting on enzymes such as DHEP 	CLO2
Unit 3	 docking. Agents acting on enzymes such as DHFR, HMG-CoA reductase and HIV protease, choline esterase (AchE & BchE) Exercise: Learner will be engaged in molecular modeling of compounds 	CLO3
10 Hours	 a) Prediction and analysis of ADMET properties of new molecules and its importance in drug design. b) De novo drug design: Receptor/enzyme-interaction and its analysis, Receptor/enzyme cavity size prediction, predicting the functional components of cavities, Fragment based drug design. 	
	 c) Homology modelling and generation of 3D- structure of protein. Exercise: Learner will study Molecular model to explain interactions between ligand and drug target 	
Unit 4 12 Hours	Pharmacophore Mapping and Virtual Screening: Concept of pharmacophore, pharmacophore mapping, identification of Pharmacophore features and Pharmacophore's modelling; Conformational search used in pharmacophore mapping. In-silico Drug Design and Virtual Screening Techniques. Similarity based methods and Pharmacophore based screening, structure based In-silico virtual screening protocols.	CLO2, CLO3

Exerc	Exercise: Learner will be engaged in Pharmacophore				
band	structure	based	In-silico	virtual	screening
protoc	cols				

1. Ellis, G.P., West, G. B. (1983). *Progress in Medicinal Chemistry Series*. Elsevier Science.

2. Foye, W.O., Lemke, T. L., Williams, D. A. (2019). *Principles of Medicinal Chemistry*, Indian Ed. Waverly, Pvt. Ltd. New Delhi.

3. Ganellin, C.R.; Roberts S. M., (1993). *Medicinal Chemistry: The Role of Organic Chemistry in Drug Research*. Publisher: Academics Press Inc.

4. Kadam, Mahadik, Bothara (2010). *Principle of Medicinal Chemistry (Volume I & II)*, Nirali publication

5. Kulkarni, V. M., Bothra, K.G., (2008). Drug Design, Nirali Publication.

6. Lawton, G., Witty, D.R. (2011). *Progress in Medicinal Chemistry Series. Volume* 50.

7. Lednicer D., Laster A. M. (1998). *The Organic Chemistry of Drug Synthesis(3 Volumes)* John Wiley & Sons.

8. Lednicer, D. (2008). Strategies for Organic Drug Synthesis and Design. (7 *volume*) Publisher: John Wiley & Sons.

9. Lemke, T.L., Williams, D.A. (2012). Foye's Principles of Medicinal Chemistry.

10. Silverman R.B., (2014). Organic Chemistry of Drug Design and Drug Action, Publisher: Elsevier.

11. Wilson, C.O.; Block, J.H.; Gisvold, O.; Beale, J. M. Wilson and Gisvold's (2003) *Textbook of Organic Medicinal and Pharmaceutical Chemistry*. Lippincott Willaiams & Wikins.

12. Gore, M., & Jagtap, U. (2018). *Computational Drug Discovery and Design*. Springer Publishers.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Team teaching
- Tutorial
- Self-learning

- PPT
- YouTube
- Molecular modeling software
- Google drive
- Google meet

Course Title	In silico	Drug Design	- Practical
---------------------	-----------	--------------------	-------------

L	Т	Р	Credits
0	0	4	2

Paper Code: CMC.524 Course Hours: 60h

Learning outcome:

After completing this course, the learner will be able to:

CLO1: Determine log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares

CLO2: Calculate ADMET properties of drug molecules and its analysis using software's

CLO3: Describe Pharmacophore modeling

CLO4: Perform 2D and 3D-QSAR based experiments

CLO5: Perform virtual screening and Homology Modelling based experiments

Course content:

Following practicals utilizing the available softwares such as ChemBio Draw, Autodock, Schrodinger, or any other online freeware, etc. need to be conducted.

Practical	Content/Title	Mapping with
		course
		learning
		outcome
1.	Determination of log P, MR, hydrogen bond donors and	CLO1
	acceptors of selected drugs using softwares	
2.	Calculation of ADMET properties of drug molecules and	CLO2
	its analysis using softwares	
3.	Pharmacophore modeling	CLO3
4.	2D-QSAR based experiments	CLO4
5.	3D-QSAR based experiments	CLO4
6.	Docking study-based experiment	CLO5

7.	Virtual screening based experiment	CLO5
8.	Homology Modelling based experiments.	CLO5
9.	Practical based on 2D and 3D-QSAR of drug molecules.	CLO4
10.	Docking and virtual screening-based experiments.	CLO5

1. León, D.; Markelln S. (2006). In silico Technologies in Drug Target Identification and Validation. by Taylor and Francis Group, LLC.

2. Kubiny, H. *QSAR: Hansch Analysis and Related Approaches. Methods and Principles in Medicinal Chemistry.* Publisher Wiley-VCH

3. Gubernator, K.; Böhm, H. Structure-Based Ligand Design. *Methods and Principles in Medicinal Chemistry*. Publisher Wiley-VCH

4. Parrill, A. H.; Reddy, M R. *Rational Drug Design. Novel Methodology and Practical Applications.*

5. Turner J. R. *New Drug Development Design, Methodology and Analysis*. John Wiley & Sons, Inc., New Jersey.

6. Gore, M., & Jagtap, U. (2018). *Computational Drug Discovery and Design*. Springer Publishers.

The following are some of the modes of classroom transaction

- Experimentation
- Demonstration
- Focused group discussion
- Problem solving

- PPT
- Google drive
- Three-dimensional models
- YouTube
- Google meet

Course Title: Advanced Spectral Analysis Paper Code: CMC.525 Course Hours: 45h

L	Т	Р	Credits
3	0	0	3

Learning outcome:

After completing this course, the learner will be able to:

CLO1: Describe the applications of UV, IR and Raman spectroscopy

CLO2: Explain the 2D NMR and Thermal method of analysis

CLO3: Conceptualize the different rules of mass fragmentation

CLO4: Describe chromatographic techniques for separation and quantification of drugs

Units/Hours	Content	Mapping with course learning outcome
Unit 1 12 Hours	 UV and IR spectroscopy: Wood ward – Fisher rule for 1,3- butadienes, cyclic dienes and carbonyl compounds and interpretation compounds of enones. ATR-IR, IR Interpretation of organic compounds, NIR Applications. 	CLO1
	 Raman Spectroscopy: Introduction, Principle, Instrumentation and Applications. Learner will calculate Lmax for conjugated diene and enone derivatives 	
Unit 2 12 Hours	NMR spectroscopy: 1-D and 2-D NMR, NOESY and COSY, HECTOR, INADEQUATE techniques, Interpretation of organic compounds.	CLO2

	Thermal methods of analysis: Introduction,	
	principle, instrumentation and application of DSC,	
	DIA anu IGA.	
	Exercise: Learner will be provided spectra for the	
II	Identification of compounds	01.00
Unit 3	Mass Spectroscopy: Mass fragmentation and its	CLO3
11 Hours	rules, Fragmentation of important functional groups	
	like alcohols, amines, carbonyl groups and alkanes,	
	Meta stable ions, Mc Lafferty rearrangement, Ring	
	rule, Isotopic peaks, Interpretation of organic	
	compounds.	
	Fuercise: Learner will apply Mass fragmentation	
	exercise: Learner will apply mass magnemation	
	rules for identification of compounds containing	
	iunctional group	
Unit 4	Chromatography: Principle, Instrumentation and	CLO4
10 Hours	Applications of the following: a) GC-MS b) GC-AAS c)	_
	LC-MS d) LC-FTIR e) LC-NMR f) CE-MS o) High	
	Performance Thin Layer chromatography h) Super	
	critical fluid chromatography i) Ion Chromatography	
	i) I EC (Ion Evolusion Chromotography) 11) Elech	
	bromotography	
	cmomatography	
	Exercise: Learner will be engaged in Learning	
	experience of chromatography by using different	
	techniques like TLC, Column, HPLC, HPTLC and	
	GC	

1. Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). *Spectrometric Identification of Organic Compounds*. John wiley & sons.

2. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). *Principles of Instrumental Analysis*. Cengage learning.

3. Willard, H. H., Merritt Jr, L. L., Dean, J. A., & Settle Jr, F. A. (1988). *Instrumental Methods and Analysis.*

4. Kemp, W. (1991). Organic Spectroscopy (pp. 42-51). London: Macmillan.

5. Sethi, P. D. (1996). *HPTLC: High Performance Thin-layer Chromatography; Quantitative Analysis of Pharmaceutical Formulations*. CBS Publishers & Distributors.

6. Sethi, P. D. (1985). *Quantitative Analysis of Drugs in Pharmaceutical Formulations*. CBS Publishers, New Delhi, 1997.

7. Munson, J. W. (Ed.). (1984). *Pharmaceutical Analysis: Modern Methods* (Vol. 11). CRC Press.

8. Findeisen, M., (2013). 50 And More Essential Nmr Experiments: A Detailed Guide. John Willey & Sons.

9. Kromidas, S. (2017). *The Hplc Expert Possibilities and Limitations of Modern High Performance Liquid Chromatography*. John Wiley and Sons

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Problem solving

- PPT
- YouTube
- Google meet

Course Title: Medicinal Chemistry-II Paper Code: CMC.526 Course Hours: 45h

L	Т	Р	Credits
3	0	0	3

Learning outcome:

After completing this course, the learner will be able to:

CLO1: Interpret basics concepts of drugs, their effects and screening.

CLO2: Describe drugs interaction with various types of enzymes and receptors

CLO3: Conceptualize the mechanism of action and SAR studies of drug molecules.

Course conten		
Units/Hours	Content	Mapping with course learning outcome
Unit 1 12 Hours	Physicochemical and stereochemical aspects: In relation to biological activity, Drug receptor interaction, Adrenergic hormones and Drugs including biosynthesis, storage, release and metabolism of catecholamines (Adrenaline, Isoprenaline, Salbutamol, Amphetamine, Naphazoline), Cholinergics and Anticholinesterases including biosynthesis, storage and metabolism of acetylcholine (Methacholine Chloride, Neostigmine Bromide), Antispasmodic and Antiulcer Drugs (Cyclopentolate, Propantheline Bromide, Benzhexol), Antiparkinsonism Drugs (Apomorphine). Exercise: Learner will be engaged in Web based learning to study Physicochemical and Stereachemical aspect of druge	CLO1
Unit 2	Neuromuscular blocking agents: Gallamine	CLO2
12 Hours	Triethiodide, Succinylcholine chloride,	

-		
	Hypoglycaemic drugs (Tolbutamide), Thyroid	
	hormones and Antithyroid drugs (L- Thyroxine,	
	Propylthiouracil) Pancuronium, vecuronium,	
	rocuronium, rapacuronium, dacuronium,	
	malouètine, duador, dipyrandium, pipecuronium,	
	chandonium. Anticoagulants and haemostatic	
	agents: Warfarin, Phenindione, Oxytocics (includes	
	discussion on Ergot alkaloids) (Ergometrine).	
	Antihistamines including discussion on Sodium	
	cromoglycate (Mepyramine, Diphenhydramine,	
	Chlorpheniramine, Promethazine). Non-steroidal	
	anti-inflammatory drugs and anti–gout drugs:	
	Indomethacin, Phenylbutazone, Allopurinol,	
	Probenecid.	
	Exercise: Learner will be engaged in Molecular	
	modeling study to understand neuromuscular	
	blocking reagent	
Unit 3	General Anaesthetic Agents: Introduction, medicinal	CLO2
11 Hours	aspects of anaesthetics, mode of action, gases and	
	volatile liquid anaesthetics, intravenous anaesthetics	
	or fixed anaesthetics, toxicity of general anaesthetics	
	(Divinyl ether, Ethyl chloride, Cyclopropane,	
	Thiopentone Sodium).	
	Local Anaesthetic Agents: Introduction, Structure-	
	activity relationships, benzoic acid derivatives,	
	aminobenzoic acid derivatives, lidocaine derivatives,	
	miscellaneous, toxicity, mode of action (Benzocaine,	
	Procaine Hydrochloride, Lidocaine Hydrochloride).	
	Exercise: Learner will be engaged in web-based	
	study to understand aesthetic reagent	
Unit 4	Sedatives-Hypnotics: Introduction, classification of	CLO3
10 Hours	sedative-hypnotics, structure-activity relationships,	
	barbiturates, amides and imides, alcohols and their	
	carbamate derivatives, aldehydes and their	
	derivatives, mode of action, pharmacological	
	properties and side effects (Barbitone,	
	Phenobarbitone, Cyclobarbitone, Pentobarbitone	
	Sodium, Thiopentone Sodium), non-barbiturates	
	(Official drugs).	
	Anticonvulsants: Introduction, epilepsy and its	
	types, SAR, barbiturates (official products),	
	hydantoins, Oxazolidinediones, Succinamides;	
	miscellaneous drugs, (Phenytoin Sodium,	

Troxidone), Antipsychotic agents: introduction, SAR	
and drugs like chlorpromazine, prochlorperazine,	
etc.	
Exercise: Learner will be engaged in group	
discussion to understand the structures of different	
sedatives and hypnotics and anticonvulsants.	

1. Delgado, J. N. and Remers W A, Ed. (2010). Wilson & Gisvold's Textbook of Organic and Pharmaceutical Chemistry, J. Lippincott Co., Philadelphia.

2. Foye, W. C. (2019). *Principles of Medicinal Chemistry*, Publisher: Wolter Kluwer.

3. King, F. D. (2006). *Medicinal Chemistry Principles and Practice*, Royale Society of Chemistry, London.

4. Nogardy, T. and Weaver D F (2005). *Medicinal Chemistry: A Molecular and Biochemical Approach*, Oxford University Press, UK.

5. Patrick, G.L. (2017). *An Introduction to Medicinal Chemistry*, Oxford University PressUS.

6. Singh, H., Kapoor, V.K. (Latest Edition). *Medicinal and Pharmaceutical Chemistry* Vallabh Prakashan, Delhi.

7. Smith, H.J. (2006). *Introduction to the Principles of Drug Design and Action*, Taylor and Francis.

8. Wermuth, C.G. (2009). *The Practice of Medicinal Chemistry*, Academic Press (Elsevier).

9. Wolff, M E, Ed., (2010). *Burger's Medicinal Chemistry and Drug Discovery* John Wiley & Sons, New York.

10. Ferrant, E., (2011). *New Synthetic Technologies In Medicinal Chemistry*. Royal Chemical Society.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Self-learning

Transaction Mode

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Process Chemistry
Paper Code: CMC.527
Course Hours: 45h

L	Т	Р	Credits
3	0	0	3

Learning outcome:

After completing this course, the learner will be able to:

CLO1: The strategies of scale up process of APIs and intermediates CLO2: The various unit operations and various reactions in process chemistry CLO3: Study the MSDS of hazardous chemicals

Units/Hours	Content	Mapping with course learning outcome
Unit 1 12 Hours	Process chemistry Introduction, Synthetic strategy, Stages of scale up process: Bench, pilot and large-scale process. In- process control and validation of large-scale process. Case studies of some scale up process of APIs. Impurities in API, types and their sources including genotoxic impurities Exercise: Learner will be provided training involving	CLO1
Unit 2 12 Hours	Unit operations <i>Extraction:</i> Liquid equilibria, extraction with reflux, extraction with agitation, counter current	CLO2

	extraction	
	Eltration. The same of filtration and an and an annual	
	Futration: Theory of hitration, pressure and vacuum	
	filtration, centrifugal filtration,	
	Distillation: azeotropic and steam distillation	
	Evaporation: Types of evaporators, factors affecting	
	evaporation.	
	Crystallization: Crystallization from aqueous, non-	
	aqueous solutions factors affecting crystallization,	
	nucleation. Principle and general methods of	
	Preparation of polymorphs, hydrates, solvates and	
	amorphous APIs.	
	Evercise: Learner will be engaged in group	
	discussion to understand Extraction filtration	
	discussion to understand Extraction, intration,	
	distillation, evaporation and crystallization processes	
Unit 3	Unit Processes - II	CLO2
11 Hours	Reduction: Catalytic hydrogenation, Heterogeneous	
	and homogeneous catalyst; Hydrogen transfer	
	reactions, Metal hydrides. Case study on industrial	
	reduction process.	
	Fermentation : Aerobic and anaerobic fermentation.	
	Production of	
	Antibiotics: Penicillin and Streptomycin	
	Vitamins: B2 and B12	
	Statins: Lovastatin, Simvastatin	
	Reaction progress kinetic analysis	
	Streamlining reaction steps, route selection.	
	Characteristics of expedient routes, characteristics of	
	cost-effective routes, reagent selection, families of	
	reagents useful for scale-up.	
	Exercise: Learner will be engaged in group	
	discussion to understand unit processes for	
	reduction, fermentation and reaction progress	
	kinetic analysis	
Unit 4	Industrial Safety	CLO3
10 Hours	MSDS (Material Safety Data Sheet) hazard labels of	
	chemicals and Personal Protection Equipment (PPF)	
	Fire hazards types of fire & fire extinguishers	
	Occupational Health & Safety Assessment Series	
	1800 (OHSAS-1800) and ISO-14001(Environmental	
	1800 (OHSAS-1800) and ISO-14001(Environmental	

Management System), Effluents and its management	
Exercise: Learner will be provided Awareness	
about industrial safety protocols	

1. Process Chemistry in the Pharmaceutical Industry: Challenges in an Ever- Changing Climate-An Overview; K. Gadamasetti, CRC Press.

- 2. Pharmaceutical Manufacturing Encyclopedia, 3rd edition, Volume 2.
- 3. Medicinal Chemistry by Burger, 6th edition, Volume 1-8.
- 4. W.L. McCabe, J.C Smith, Peter Harriott. Unit operations of chemical engineering, 7th edition, McGraw Hill
- 5. Polymorphism in Pharmaceutical Solids. Dekker Series Volume 95 Ed: H G Brittain (1999)
- 6. Regina M. Murphy: Introduction to Chemical Processes: Principles, Analysis, Synthesis
- 7. Peter J. Harrington: Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-Up
- 8. P.H.Groggins: Unit processes in organic synthesis (MGH)
- 9. F.A.Henglein: Chemical Technology (Pergamon)
- 10. M.Gopal: Dryden's Outlines of Chemical Technology, WEP East-West Press
- 11. Clausen, Mattson: Principle of Industrial Chemistry, Wiley Publishing Co.,
- 12. Lowenheim & M.K. Moran: Industrial Chemicals
- 13. S.D. Shukla & G.N. Pandey: A text book of Chemical Technology Vol. II,

Vikas Publishing House

- 14. J.K. Stille: Industrial Organic Chemistry (PH)
- 15. Shreve: Chemical Process, Mc Grawhill.
- 16. B.K.Sharma: Industrial Chemistry, Goel Publishing House
- 17. ICH Guidelines
- 18. United States Food and Drug Administration official website www.fda.gov

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Team teaching

- PPT
- YouTube

- Google drive
- Google meet

Course Title: Modern analytical techniques Paper Code: CMC.528 Course Hours: 45h

L	Т	Р	Credits
3	0	0	3

Learning Outcomes

After completing this course, the learner will be able to:

CLO1: Conceptualize general principle and theory of spectroscopy

CLO2: Describe the concept and instrumentation of UV-Vis, IR, NMR, Mass and Chromatographic techniques

CLO3: Solve the spectra of compounds

CLO4: Separate different constituents in a mixture by chromatographic techniques

Units/Hours	Content	Mapping
		with course
		learning
		outcome
Unit 1	UV-Visible spectroscopy: Introduction, Theory,	CL01, CL02
12 Hours	Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy, Difference/ Derivative spectroscopy.	
	IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier – Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation, Theory of NIR.	

Unit 2	Exercise: Learner will be provided Hands on training to different instruments like UV Spectrophotometer, IR and spectroflourimetry	CLO1
12 Hours	 their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factor influencingchemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and ¹³C NMR. Applications of NMR spectroscopy. Exercise: Learner will be provided NMR spectra's 	CLO2, CLO3
	for the characterization of compounds	
Unit 3	Mass Spectroscopy: Principle, Theory,	CLO1,
Hours	types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy. Exercise: Learner will be provided mass spectra's	CLO2, CLO3
	for the characterization of compounds	
Unit 4 Hours	Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution, isolation of drug from excipients, data interpretation and applications of the following: Thin Layer chromatography, High Performance Thin Layer Chromatography, Ion exchange chromatography, Column chromatography, Gas chromatography, High Performance Liquid chromatography, Ultra High-Performance Liquid chromatography, Affinity chromatography, Gel Chromatography	CLO2, CLO4
	Exercise: Learner will be provided experience of chromatography by using different techniques like TLC, Column, HPLC, HPTLC and GC	

1. Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). *Spectrometric Identification of Organic Compounds.* John wiley & Sons.

2. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2018). Principles of Instrumental Analysis. Singapore: Cengage Learning Asia Pte Ltd.

3. Willard, H. H. (2012). Instrumental methods of analysis. New Delhi: CBS.

4. Beckett, A. H., & Stenlake, J. B. (Eds.). (1988). *Practical Pharmaceutical Chemistry: Part II*, A&C Black.

5. Kemp, W. (1991). Organic Spectroscopy (pp. 42-51). London: Macmillan.

6. Sethi, P. D. (1985). *Quantitative Analysis of Drugs in Pharmaceutical Formulations*. Unique Publishers.

7. Munson, J. W. (Ed.). (1984). *Pharmaceutical Analysis: Modern Methods* (Vol. 11). CRC Press.

8. Kalsi, P. S. (2007). *Spectroscopy of Organic Compounds*. New Age International.

9. Connors, K. A. (2007). A Textbook of Pharmaceutical Analysis. John Wiley & Sons.

10. McHale, J. L. (2017). Molecular Spectroscopy. CRC Press.

11. Kromidas, S. (2017). The HPLC Expert Possibilities and Limitations of Modern High Performance Liquid Chromatography. John Wiley and Sons.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Team teaching
- Self-learning

- PPT
- YouTube
- Google meet

Elective Course

Course Title: Green Chemistry	L	Т	Р	Credits	
Paper Code: CMC.529					
Course Hours: 45h	3	0	0	3	

Learning outcome

After completing this course, the learner will be able to:

CLO1: Describe various aspects of green chemistry for sustainable development CLO2: Utilize ionic liquids and solid supported reaction conditions to reduce or eliminate use of volatile organic solvents CLO3: Utilize MW and sonicator in organic synthesis

Units/Hours	Content	Mapping with course learning outcome
Unit 1 12 Hours	Introduction to green chemistry : History, need and goals. Green chemistry and sustainability, dimensions of sustainability, limitations/obstacles in pursuit of the goals of green chemistry. Opportunities for the next generation of materials designers to create a safer future. Basic principles of green chemistry: Atom economy and scope, Prevention/Minimization of hazardous/toxic	CLO1

	 appropriate auxiliary substances (solvents, separation agents etc.), use of renewable starting materials, Avoidance of unnecessary derivatization-careful use of blocking/protection groups. Use of catalytic reagents (wherever possible) in preference to stoichiometric reagents, designing biodegradable products, Exercise: Learner will be engaged in Group 	
Unit 2 11 Hours	discussion to explain Green Chemistry PrinciplesPreventionofchemicalaccidents,Strengthening/development of analytical techniquesto prevent and minimize the generation of hazardoussubstances in chemical processes. Development ofaccurate and reliable sensors and monitors for realtime in process monitoring.	CLO1
	Exercise: Learner will be provided web-based learning for prevention of chemical accident and minimization of hazardous products	
Unit 3 12 Hours	Approaches to green synthesis: Basic principles of green synthesis. Different approaches to green synthesis, Use of green reagents in green synthesis: polymer supported reagents, polymer supported peptide coupling reagents. Green catalysts, Phase- transfer catalysts in green synthesis. Advantages of PTC, Reactions to green synthesis, Application of PTCs in C-alkylation, N-alkylation, S-alkylation. Darzens reaction, Williamson's synthesis, Wittig reaction, Click Chemistry. Use of Crown ethers in esterification, saponification, anhydride formation, aromatic substitution and elimination reactions. Water and ionic liquids as green solvents. Exercise: Learner will be engaged in Group discussion to explain the use of PTC and crown	CLO2
	ethers	
Unit 4	Microwave induced and ultrasound assisted green	CLO3
10 Hours	synthesis: Introduction to synthetic organic	

Introduction, substitution reactions, addition, oxidation, reduction reactions. Biocatalysts in organic synthesis: Introduction, Biochemical oxidation and reductions.
Exercise: Learner will be engaged in Web based learning to Perform Microwave induced and ultrasound assisted reactions

1. Ahulwalia, V.K.; Kidwai M. (2004). New Trends in Green Chemistry, Springer

2. Anastas, P.T.; Warner J. C. (2000). *Green Chemistry, Theory and Practical*. Oxford University Press.

3. Grieco, P.A. (1997). Organic Synthesis in Water. Publisher: Kluwer Academic.

4. Matlack, A. (2010). *Introduction to green chemistry*. CRC Press.

5. Ahluwalia, V. K. (2011). *Green Chemistry: Greener Alternatives to Synthetic Organic Transformations*. Alpha Science International.

6. Torok, B.; Dransfield, T. (2018). *Green Chemistry: An Inclusice Approach*, Elsevier

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Self-learning

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Nuclear Chemistry

L	Т	Р	Credits
3	0	0	3

Paper Code: CMC.530 Course Hours: 45h

Learning outcome:

After completing this course, the learner will be able to

- CLO1: Explain the nuclear structure and its stability
- CLO2: Describe nuclear reactions and different fission model
- CLO3: Explain reactor theory along with nuclear resources
- CLO4: Describe interaction of gamma radiation

Units/Hours	Content	Mapping with course learning outcome
Unit 1	Nuclear Structure and Stability	CLO1
10 Hours	Binding energy, empirical mass equation, nuclear models, the liquid drop model, the shell model, the Fermi gas model & collective nuclear model, nuclear spin, parity & magnetic moments of odd mass numbers nuclei.	
	Exercise: Learner will be provided models to explain structure and stability of nucleus	

Unit 2	Nuclear reaction	CLO2
12 Hours	Introduction, Production of projectiles, nuclear cross	
	section, nuclear dynamics, threshold energy of	
	nuclear reaction, Coulomb scattering, potential	
	barrier, potential well, formation of a compound	
	nucleus, Nuclear reactions, direct Nuclear reactions,	
	heavy ion induced nuclear reactions, photonuclear	
	reactions.	
	Nuclear fission	
	Liquid drop model of fission, fission barrier and	
	threshold, fission cross section, mass energy and	
	charge distribution of fission products, symmetric	
	and Asymmetric fission, decay chains and delayed	
	neutrons.	
	Exercise: Learner will be provided Web based	
	learning to understand nuclear fission reactions	
Unit 3	Reactor Theory	CLO3
12 Hours	Nuclear fission as a source of energy, Nuclear chain	
	reacting systems, critical size of a reaction, research	
	reactors, graphite moderated, heterogeneous,	
	enriched uranium reactors, light water moderated,	
	heterogeneous, enriched uranium reactors, water	
	boilers enriched aq. Homogeneous reactors,	
	Thermonuclear reactors, gamma interactions,	
	shielding and health protection. Reactors in India.	
	Nuclear Resources in India	
	Uranium and Thorium resources in India and their	
	extractions, Heavy water manufacturing in India.	
	Exercise: Learner will be engaged in group	
	discussion to understand reactor theory and natural	
	resources in India	
Unit 4	Elements of Radiation Chemistry	CLO4
11 Hours	Radiation Chemistry, Interaction of radiation with	
	matter, Passage of neutrons through matter,	
	Interaction of gamma radiation with matter, Units for	
	measuring radiation absorption, Radiolysis of water,	
	Free radicals in water radiolysis, Radiolysis of some	
	aqueous solutions	
	Exercise: Learner will be provided Web based	
	learning to understand radiation chemistry and	

interaction of gamma radiation	interaction of gamma radiation

1. Friedlander, G., Kennedy, J. W., & Macias, E. S. (1981). Nuclear and radiochemistry. John Wiley & Sons.

2. Harvey, B. G. (1962). Introduction to Nuclear Physics and Chemistry. Soil Science, 94(4), 274.

3. Haissinsky, M. (1964). *Nuclear chemistry and its applications*. Addison-Wesley Pub. Co.

5. Choppin, G. R., Liljenzin, J. O., & Rydberg, J. (2002). *Radiochemistry and Nuclear Chemistry*. Butterworth-Heinemann.

6. Friedlander, G., Kennedy, J. W., & Macias, E. S. (1981). Nuclear and Radiochemistry. John Wiley & Sons.

7. Kanne, W. R. (1961). *Basic Principles of Nuclear Science and Reactors*. Journal of the American Chemical Society, 83(2), 508-508.

8. Darmstadter, J., Landsberg, H. H., & Morton, H. C. (1983). *Energy, today and tomorrow: living with uncertainty*. Prentice Hall.

9. Kenneth: Nuclear Power Today, Tomorrow: ELBS

10. Arnikar, H. J. (1995). *Essentials of nuclear chemistry* (No. 1653). New Age International.

11. Cottingham, W. N., Greenwood, D. A., & Greenwood, D. A. (2001). An *Introduction to Nuclear Physics*. Cambridge University Press.

The following are some of the modes of classroom transaction

- Lecture
- Demonstration
- Tutorial
- Self-learning

- PPT
- YouTube

Semester –III

Course Title: Research Methodology & Biostatistics	L	Т	Р	Credits
Paper Code: CMC.551	3	0	0	3
Course Hours: 45h				

Learning Outcomes:

After completing this course, the learner will be able to:

- CLO1: Define an appropriate research problem
- CLO2: Describe the objectives based on literature search.
- CLO3: Prepare poster and dissertation work
- CLO4: To apply biostatistics in research problem

Units/Hours	Content	Mapping with course learning outcome
Unit 1 12 Hours	GeneralResearchMethodology:Research,objective, requirements, practical difficulties, reviewof literature, study design, types of studies. Strategiesto eliminate errors/bias, controls, randomization,crossover design, placebo, blinding techniques.Exercise:Learner will be engaged in literature searchand study design	CLO1, CLO2

Unit 2 11 Hours	 Technical writing: Scientific writing, Writing research paper, Poster preparation and Presentation and Dissertation. Exercise: Learner will be engaged in scientific writing, poster presentation and dissertation 	CLO3
Unit 3 10 Hours	Library: Classification systems, e-Library, Reference management, Web-based literature search-engines Exercise: Learner will be engaged in web-based literature search engine	CLO2
Unit 4 12 Hours	Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students "t" test, ANOVA, Correlation coefficient, regression), non- parametric tests (wilcoxan rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values. Exercise: Learner will be engaged in Web based learning to explain concepts of biostaticts in reseach problem	CLO4

1. Gupta, S. (2005). *Research methodology and statistical techniques*, Deep & Deep Publications (p) Ltd. New Delhi.

2. Kothari, C. R. (2008.) *Research Methodology(s)*, New Age International (p) Limited.New Delhi

3. Best J. W., Khan J. V. (Latest Edition) *Research in Education*, Prentice Hall of India Pvt. Ltd.

4. Safe Science: Promoting a Culture of Safety in Academic Chemical Research; National Academic Press, www.nap.edu.

5. Creswell, D., & Creswell, J. W. (2017). *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches.*

The following are some of the modes of classroom transaction

- Lecture
- Group discussion

• Demonstration

Transaction Mode

- PPT
- YouTube
- Google drive

Course Title: Organic Chemistry-III	L	Т	Р	Credits	
Paper Code: CMC.552	3	0	0	3	

Paper Code: CMC.552 Course Hours: 45h

Learning outcome:

After completing this course, the learner will be able to:

CLO1: Determine the mechanism and feasibility of a chemical reaction

CLO2: Describe the asymmetric synthesis, chiral resolution and apply it on the resolution of chiral drugs.

CLO3: Conceptualize various metal and non-metal reagents towards oxidation and reduction reactions

CLO4: Explain ylide reactions and their stereochemistry

Units/Hours	Content	Mapping with course learning outcome
Unit 1	Reaction mechanism, structure and reactivity:	CLO1
11 Hours	Types of mechanisms, types of reactions, kinetic	
	and thermodynamic control, Hammond's postulate,	
	Curtin-Hammett principle, Potential energy	
	diagrams, Transition states and intermediates,	

	Kinetics and non-kinetics method, Isotopes effects, Effect of structure on reactivity; Resonance, inductive, electrostatic and steric effect, quantitative treatment, the Hammett equation and linear free energy relationship, Substituent and reaction constants, Taft equation. Exercise: Learner will be engaged in Group discussion to explain reaction mechanism	
Unit 2 10 Hours	Asymmetric synthesis, chiral pools, chiral catalysis: Chiral auxiliaries, methods of asymmetric induction – substrate, reagent and catalyst- controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination. Resolution – optical and kinetic, Chemo- regio- and stereoselective transformations, Organocatalysis Exercise: Learner will be engaged in Molecular models to explain the stereochemistry in	CLO2
	asymmetric reaction	
Unit 3	Metal and non-metal mediated oxidation and	CLO3
12 Hours	reductions: Mechanism, Selectivity, Stereochemistry and applications of oxidation reactions, Oppenauer, Baeyer-Villiger, Oxidation reactions using DDQ, NBS, lead tetraacetate, selenium dioxide, DCC, PCC, CAN, Cr and Mn reagents, periodic acid, Osmium tetroxide, Swern oxidations, Hydroboration, Dehydrogenation, Ozonolysis, Epoxidations using peracids. Mechanism, selectivity, stereochemistry and applications of catalytic hydrogenations using Pd, Pt and Ni catalysts, Clemmensen reduction, Wolff- Kishner reduction, Meerwein-Pondorff-Verley reduction, Dissolving metal reductions, metal hydride reductions using NaBH ₄ , LiAlH ₄ , DIBAL. Wilkinson's Rh catalysis, Boron in reduction	
	Exercise: Learner will be engaged in web mediated activity to explain different reagents in chemical synthesis	
Unit 4	Reaction of ylides: Phosphorus ylide; Structure	CLO4
12 Hours	and reactivity, stabilized ylides, effects of ligands on reactivity, Witting, Wittig-Horner and Wadsworth, Emmons reactions-mechanistic realization; E/Z	

selectivity for olefin formation, Schlosser modification: Peterson's olefin synthesis. Sulphur
Ylides; Stabilized and non-stabilized ylides: Thermodynamically and kinetically controlled
stereo-selective reactions
Exercise: Learner will be engaged in Molecular models to explain the reaction of ylides and their E/Z selectivity

1. Acheson, R.M. (1976). An Introduction to the Chemistry of Heterocyclic Compounds, Wiley India Pvt. Ltd.

2. Ahluwalia, V. K., and Parasar R. K., (2011). Organic Reaction *Mechanism*, Narosa Publishing House (P) Ltd., India.

3. Bansal, R. K., (2012). *Organic Reaction Mechanism*, New Age International (P) Ltd., New Delhi.

4. Bansal, R. K., (2007). *A Text Book of Organic Chemistry*, New Age Insternational (P) Ltd., New Delhi.

5. Bansal, R.K. (2010). *Hetrocyclic Chemistry*, New Age Inrternational (P) Ltd., New Delhi.

6. Carey B. F. A., Sundberg R.J., (2007). *Advanced Organic Chemistry Part A and Part B, Springer*.

7. Finar, I. L., (2012). Organic Chemistry Vol. 1, Pearson Education, UK.

8. Gilchrist, T.L. (1997). Heterocyclic Chemistry, Longman, Prentice Hall, US.

9. Gupta R.R., Kumar M., Gupta V. (2010). *Heterocyclic Chemistry-II Five Membered Heterocycles Vol. 1-3*, Springer Verlag, India.

10. Joule, J.A., Mills, K. (2010). *Heterocyclic Chemistry*, Blackwell Publishers, New York.

11. Kalsi, P. S., (2008). *Stereochemistry: Conformation and Mechanism*, New Age International (P) Ltd., India.

12. Kalsi P. S., (2014). Organic Reactions and Their Mechanisms, New Age International Publication, New Delhi.

- 13. Lowry, T. H., Richardson K. S., (1998). *Mechanism and Theory in Organic Chemistry*, Addison-Wesley Longman Inc., US.
- 14. Morrison, R.T., Boyd R.N., (2011). *Organic Chemistry*, Prentice- Hall of India, New Delhi.
- 15. Mukherjee S. M., Singh S. P., (2009). *Reaction Mechanism in Organic Chemistry*, Macmillan India Ltd., New Delhi.

- 16. R. Katritzky, (2010). Handbook of Heterocyclic Chemistry Elsevier, UK.
- 17. Smith, M. B. (2013). March's advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons.
- 18. Kalsi, P. S., (2008). *Stereochemistry: Conformation and Mechanism*, New Age International (P) Ltd., India
- 19. Lowry, T. H., Richardson K. S., (1998). *Mechanism and Theory in Organic Chemistry*, Addison-Wesley Longman Inc., US.
- 20. Morrison, R.T., Boyd R.N., (2011). *Organic Chemistry*, Prentice- Hall of India, New Delhi.
- 21. Mukherjee S. M., Singh S. P., (2009). *Reaction Mechanism in Organic Chemistry*, Macmillan India Ltd., New Delhi.
- 22. Smith, M. B. (2013). *March's advanced organic chemistry: reactions, mechanisms, and structure.* John Wiley & Sons.
- 23. Carey, F. A., Guiliano, R. M. (2012). Organic Chemistry. McGraw Hill.
- 24. Kofie, W., Caddick, S. (2016). Problems in Advanced Organic Chemistry. Auris Publishing.
- 25. Solomons, T. W. G., Fryhle, C. B., Snyder, S. A. (2017). Solomons' Organic Chemistry. John Willey & Sons.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Self-learning

- PPT
- YouTube
- Google meet

Course Title: Organic Synthesis-III-(Practical)

L	Т	P	Credits
0	0	4	2

Paper Code: CMC.553 Course Hours: 60h

Learning outcomes: After completing this course, the learner will be able to

CLO1: Synthesize 5, 6, and 7 membered heterocyclics compounds and their characterization

CLO2: Synthesis under photochemical conditions

CLO3: Describe Metal catalyzed reactions

CLO4: Interpret of UV, IR, ¹H data and ¹³C NMR, IR, UV and Mass spectral data

Course contents:

Practical	Content/Title	Mapping with course
		learning outcome
1.	Synthesis of 5, 6, and 7 membered	CLO1
	heterocyclics using conventional heating or	
	microwave heating	
2.	Experiments involving photochemical	CLO2
	reactions	
3.	Experiments involving metal catalyzed reaction	CLO3
4.	Exercises of structure identifications of above	CLO4
	synthesized compounds via spectral	
	interpretation using UV data	

-	E	
5.	Exercises of structure identifications of above	CLOI, CL04
	synthesized compounds <i>via</i> spectral	
	interpretation using IR data	
6.	Exercises of structure identifications of above	CLO1, CL04
	synthesized compounds via spectral	
	interpretation using ¹ H data	
7.	Exercises of structure identifications of above	CLO1, CLO4
	synthesized compounds <i>via</i> spectral	·
	interpretation using ¹ H data and ¹³ C NMR	
8.	Exercises of structure identifications of above	CL04
	synthesized compounds via spectral	
	interpretation using Mass	
9.	Exercises of structure identifications of above	CL04
	synthesized compounds via spectral	
	interpretation using combined data of UV, IR,	
	¹ H data and ¹³ C NMR, IR, UV and Mass.	

1. Adams, R., Johnson, J.R., Wilcox, C.F. (1970). Laboratory Experiments in Organic Chemistry, The Macmilan Limited, London.

2. Mann and Saunders. (2009). *Practical organic chemistry*, Pearson.

3. Pasto, D.P., Johnson, C., Miller, M. (2010). *Experiments and Techniques in Organic Chemistry*, Prentice Hall.

4. Roberts, R.M., Gilbert, J.C., Rodewald, L.B. Wingrove, A.S. (1969). *An introduction to Modern Experimental Organic Chemistry*, Ranehart and Winston Inc., New York.

5. Vogel, A.I. (latest edition). Text Book of Practical Organic Chemistry, Pearson

6. Williamson, K.L., Health, D.C. (1999). *Macroscale and Microscale Organic Experiments*, *Heath*, *D.C* and Co., Lexington, MA.

7. Armarego, W. L., & Chai, C. (2012). *Purification of Laboratory Chemicals*. Butterworth-Heinemann.

8. Young, J. A. (Ed.). (Latest Edition). *Improving Safety in the Chemical Laboratory: a Practical Guide*. Wiley.

9. Kofie, W., Caddick, S. (2016). *Problems in Advanced Organic Chemistry*. Auris Publishing.

10. Solomons, T. W. G., Fryhle, C. B., Snyder, S. A. (2017). *Solomons' Organic Chemistry*. John Willey & Sons.

The following are some of the modes of classroom transaction
- Experimentation
- Group discussion
- Demonstration
- Self-learning

Transaction Mode

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Entrepreneurship	L	Т	Р	Credits
Paper Code: CMC. 554	1	0	0	1
Course Hours: 15h				

Learning Outcomes: After completing this course, the learner will be able to:

CLO1: Understand the basic concepts of entrepreneur, entrepreneurship and its importance.

CLO2: Aware of the issues, challenges and opportunities in entrepreneurship.

CLO3: Develop capabilities of preparing proposals for starting small businesses.

CLO4: Know the availability of various institutional supports for making a new startup.

Units/Hours	Content	Mapping with course
		learning outcome

Unit 1	Introduction to entrepreneur and entrepreneurship;	CLO1
3 Hours	Characteristics of an entrepreneur; Characteristics of	
	entrepreneurship: entrepreneurial traits and skills:	
	innovation and entrepreneurship: Types of	
	entrepreneurial ventures: enterprise and society in	
	Indian context: Importance of women	
	entrepreneurship	
	Exercise: Learner will be engaged in Group	
	discussion to explain the concept of entrepreneurship	
Unit 2	Promotion of a venture – Why to start a small	CLO2
4 Hours	business; How to start a small business; opportunity	
	analysis, external environmental analysis, legal	
	requirements for establishing a new unit, raising of	
	funds, and establishing the venture - Project report	
	preparation – format for a preliminary project report,	
	format for a detailed/final project report.	
	Exercise: Learner will interact with Entrepreneurs to	
	understand how to start small business	
Unit 3	Launching and Organising an Enterprise:	CLO1, CLO2
5 Hours	Environment scanning – Information, sources,	
	schemes of assistance, problems. Enterprise	
	selection, market assessment, enterprise feasibility	
	study, SWOT Analysis. Resource mobilisation -	
	finance, technology, raw material, site and	
	manpower. Costing and marketing management and	
	quality control. Feedback, monitoring and evaluation.	
	Exercise: Learner will be engaged in Group	
	discussion to explain about resource mobilization,	
	costing and marketing management	
Unit 4	Preparing Project Proposal to Start On New	CLO3, CLO4
3 Hours	Enterprise Project work – Feasibility report;	
	Planning, resource mobilisation and	
	Planning, resource mobilisation and implementation.	
	Planning, resource mobilisation and implementation.	
	Planning, resource mobilisation and implementation. Exercise: Learner will be engaged to prepare project	

Suggested Readings:

1. Arora, Renu (2008). *Entrepreneurship and Small Business*, Dhanpat Rai & Sons Publications.

2. Chandra, Prasaaan (2018). *Project Preparation, Appraisal, Implementation*, Tata Mc-Graw Hills.

3. Desai, Vasant (2019). *Management of a Small-Scale Industry*, Himalaya Publishing House.

4. Jain, P. C. (2015). Handbook of New Entrepreneurs, Oxford University Press.

5. Srivastava, S. B. (2009). *A Practical Guide to Industrial Entrepreneurs*, Sultan Chand & Sons.

6. Akhauri, M.M.P. (1990): Entrepreneurship for Women in India, NIESBUD, New Delhi.

7. Hisrich, R.D & Brush, C.G. (1996) The Women Entrepreneurs, D.C. Health & Co., Toranto.

8. Hisrich, R.D. and Peters, M.P. (1995): Entrepreneurship – Starting, Developing and Managing a New Enterprise, Richard D., Inwin, INC, USA.

9. Meredith, G.G. etal (1982): Practice of Entrepreneurship, ILO, Geneva.

10. Patel, V.C. (1987): Women Entrepreneurship – Developing New Entrepreneurs, Ahmedabad EDII.

The following are some of the modes of classroom transaction

- Group discussion
- Lecture
- Demonstration
- Team teaching

- PPT
- YouTube
- Google drive
- Google meet

Course Title: Organic Chemistry Worksheet

L	Т	P	Credits
2	0	0	2

Course Code: CMC. 555 Course Hours: 30h

Learning outcome

After completing this course, the learner will be able to:

CLO1: Conceptualize the mechanism of Pericyclic reactions CLO2: Characterized structure of organic compounds CLO3: Develop Analytical skills

Units/Hours	Content	Mapping with course learning outcome
Unit 1 15 Hours	Pericyclic reactions – electrocyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry. Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O, N, S) Exercise: Learner will be engaged in Web based learning to understand the concept of	CLO1

	photochemical and thermal assisted reactions	
Unit 2	Chemistry of natural products: Carbohydrates,	CLO2, CLO3
15 Hours	proteins and peptides, fatty acids, nucleic acids,	
	terpenes, steroids and alkaloids. Biogenesis of	
	terpenoids and alkaloids. Structure determination of	
	organic compounds by IR, UV-Vis, ¹ H & ¹³ C NMR and	
	Mass spectroscopic techniques.	
	Exercise: Learner will be provided Spectra's of	
	natural products to characterize the structure of	
	compounds	

Suggested readings

1. Clayden, J., Greeves, N., Warren, S., Wothers, P. (2012). *Organic Chemistry*. Oxford press.

2. Ahluwalia, V. K., and Parasar R. K., (2011). *Organic Reaction Mechanism*, Narosa Publishing House (P) Ltd., India.

3. Bansal, R. K., (2012). *Organic Reaction Mechanism*, New Age International (P) Ltd., New Delhi.

4. Bansal, R. K., (2007). *A text book of Organic Chemistry*, New Age Inrternational (P) Ltd., New Delhi.

5. Bansal, R.K. (2010). *Hetrocyclic Chemistry*, New Age International (P) Ltd., New Delhi.

6. Carey B. F. A., Sundberg R.J., (2007). *Advanced Organic Chemistry Part A and Part B, Springer*.

7. Finar, I. L., (2012). Organic Chemistry Vol. 1, Pearson Education, UK.

8. Gilchrist, T.L. (1997). *Heterocyclic Chemistry*, Longman, Prentice Hall, US.

9. Gupta R.R., Kumar M., Gupta V. (2010). *Heterocyclic Chemistry-II Five Membered Heterocycles Vol. 1-3*, Springer Verlag, India.

10. Joule, J.A., Mills, K. (2010). *Heterocyclic Chemistry*, Blackwell Publishers, New York.

11. Kalsi P. S., (2010). Organic Reactions and Their Mechanisms, New Age International Publication, New Delhi.

12. Lowry, T. H., Richardson K. S., (1998). *Mechanism and Theory in Organic Chemistry*, Addison-Wesley Longman Inc., US.

13. Morrison, R.T., Boyd R.N., (2011). *Organic Chemistry*, Prentice- Hall of India, New Delhi.

14. Mukherjee S. M., Singh S. P., (2009). Reaction Mechanism in Organic Chemistry, Macmillan India Ltd., New Delhi.

15. Sethi, P. D. (1985). *Quantitative Analysis of Drugs in Pharmaceutical Formulations*. Unique Publishers.

16. Munson, J. W. (1984). Pharmaceutical analysis: modern methods. B. Drugs and the Pharmaceutical Sciences, 11.

17. Kalsi, P. S. (2007). *Spectroscopy of Organic Compounds*. New Age International.

18. Connors, K. A. (2007). A Textbook of Pharmaceutical Analysis. John Wiley & Sons.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Tutorial
- Self-learning

- PPT
- YouTube
- Google drive
- Google meet

L	Т	Р	Credits
3	0	0	3

Course Title: Computer Applications Paper Code: CMC.556 Course Hours: 45h

Learning outcomes:

Upon successful completion of this course, the student will be able to:

CLO1: Use different operating system and their tools easily.

CLO2: Use word processing software, presentation software, spreadsheet software and latex.

CLO3: Explain networking and internet concepts.

CLO4: Use computers in every field like teaching, industry and research.

Units/Hours	Content	Mapping with course learning outcome
Unit 1	Computer Fundamentals: Introduction to Computer,	CLO1
10 Hours	Input devices, Output Devices, Memory (Primary and	
	Secondary), Concept of Hardware and Software,	
	C.P.U., System bus, Motherboard, Ports and	

	Interfaces, Expansion Cards, Ribbon Cables, Memory	
	Chins. Processors, Software: Types of Software.	
	Operating System User Interface of popular Operating	
	System Introduction to programming language Types	
	of Computer	
	of computer.	
	Fuereiges Learner will be engaged in group discussion	
	Exercise: Learner will be engaged in group discussion	
	to understand fundamentals and type of computer	
Unit 2	Computer Network: Introduction to Computer	CLO2, CLO3
11 Hours	Network, Types of Network: LAN, WAN and MAN,	
	Topologies of Network, Internet concept, WWW.	
	Word Processing: Text creation and Manipulation;	
	Table handling; Spell check, Hyper-linking, Creating	
	Table of Contents and table of figures, Creating and	
	tracking comments, language setting and thesaurus,	
	Header and Footer, Mail Merge, Different views,	
	Creating equations, Page setting, Printing, Shortcut	
	keys.	
	Exercise: Learner will be provided web-based learning	
	to understand computer network and word processing	
	to understand compater network and word processing	
Unit 3	Presentation Tool: Creating Presentations,	CLO4
Unit 3 12 Hours	Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition,	CLO4
Unit 3 12 Hours	Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and	CLO4
Unit 3 12 Hours	Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running	CLO4
Unit 3 12 Hours	Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations,	CLO4
Unit 3 12 Hours	Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys.	CLO4
Unit 3 12 Hours	Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet : Entering and editing data in cell, Basic	CLO4
Unit 3 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells. 	CLO4
Unit 3 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of 	CLO4
Unit 3 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet. Shortcut keys. 	CLO4
Unit 3 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. 	CLO4
Unit 3 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power 	CLO4
Unit 3 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power point presentation for their seminar and dissertation 	CLO4
Unit 3 12 Hours Ilnit 4	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power point presentation for their seminar and dissertation 	CLO4
Unit 3 12 Hours Unit 4 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power point presentation for their seminar and dissertation Use of Computers in Education and Research: Data analysis tools, e-Library, Search engines, related to 	CLO4 CLO4
Unit 3 12 Hours Unit 4 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power point presentation for their seminar and dissertation Use of Computers in Education and Research: Data analysis tools, e-Library, Search engines related to research Research paper editing tools like Latex 	CLO4
Unit 3 12 Hours Unit 4 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power point presentation for their seminar and dissertation Use of Computers in Education and Research: Data analysis tools, e-Library, Search engines related to research, Research paper editing tools like Latex. 	CLO4
Unit 3 12 Hours Unit 4 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power point presentation for their seminar and dissertation Use of Computers in Education and Research: Data analysis tools, e-Library, Search engines related to research, Research paper editing tools like Latex. 	CLO4 CLO4
Unit 3 12 Hours Unit 4 12 Hours	 Presentation Tool: Creating Presentations, Presentation views, working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, and Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Exercise: Learner will be engaged in to prepare power point presentation for their seminar and dissertation Use of Computers in Education and Research: Data analysis tools, e-Library, Search engines related to research, Research paper editing tools like Latex. Exercise: Learner will use e-library, search engines for writing proposal and manuscripts 	CLO4

Suggested Readings:

1. Sinha, P.K. Computer Fundamentals. BPB Publications.

2. Goel, A., Ray, S. K. 2012. Computers: Basics and Applications. Pearson Education

India.

3. Microsoft Office Professional 2013 Step by Step

https://ptgmedia.pearsoncmg.com/images/9780735669413/samplepages/978073 56694 13.pdf

4. Gookin, D. (2013). Word 2013 for dummies. John Wiley & Sons.

5. Harvey, G. (2016). Excel 2016 for dummies. John Wiley & Sons.

6. Bott, E., Siechert, C., & Stinson, C. (2009). *Windows 7 inside out*. Pearson Education.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration
- Tutorial
- Self-learning

- PPT
- YouTube
- Google meet

Course Title: Dissertation Part-I	L	Т	Р	Credits
Paper Code: CMC.600	0	0	8	4

Learning outcome:

After completing this course, the learner will be able to:

CLO1: Designing of research problem and prepare synopsis CLO2: Preparation of synopsis for Project CLO3: Planning of experiments

Evaluation criteria:

- Literature survey/background information
- Organization of content
- Physical presentation
- Questions and answers
- Report evaluation

Mapping with course learning outcome: CLO1, CLO2, CLO3

The following are some of the **modes of transaction**

- Lecture cum demonstration
- Project Method

- Seminar
- Group discussion

The following **tools** can be used in **different transactional modes**: PPT TED Talks Video google drive Multimedia packages

Software tools

- Tracker
- ChemBioDraw
- Schrodinger
- maestro/AutoDock
- ppt
- BLAST
- Endnote

Course Title: Logics of Organic Synthesis

Paper Code: CMC.557 Course Hours: 45h

L T P Credits 3 0 0 3

Learning Outcomes

After completing this course, the learner will be able to:

CLO1: Explain the reactions of different reaction intermediates

CLO2: Conceptualized the concept of Regio- and stereo-selectivity in enolate generation

CLO3: Explain protection and de-protection of functional groups

Course	Content

Units/Hours	Content	Mapping
		with course
		learning
		outcome
Unit 1	Reactive intermediates: Generation, structure	CLO1
10 Hours	and reactions of carbocation, carbanion, free	
	radicals, carbenes, nitrenes, benzynes, classical	
	and non-classical carbocations, phenonium ions	
	and norbornyl system, neighboring group	
	participation.	
	Exercise: Learner will be engaged in group	
	discussion to explain reactive intermediates	
Unit 2	Alkylation: Enolates: Regio- and stereo-	CLO2
12 Hours	selectivity in enolate generation. "O" versus "C"	
	alkylation, Effect of solvent, Counter cation and	
	Electrophiles; Symbiotic effect;	
	Thermodynamically and kinetically controlled	
	enolate formations; Various transition state	
	models to explain steroselective enolate	
	formation; Enamines and metallo-enamines;	
	Regioselectivity in generation, Application in	
	controlling the selectivity of alkylation.	
	Exercise: Learner will be engaged in Web	
	base learning to understand the concepts of	
	enolates	

Unit 3	Protection and deprotection of various CLO3		
13 Hours	functional groups:		
	Protection of alcohols by ether, silyl ethers and		
	ester formations and their deprotection,		
	Protection of 1, 2 diols- by acetal, ketal and		
	carbonate formation and their deprotection,		
	Protection of amines by acetylation, benzylation,		
	benzyloxy carbonyl, t-butoxycarbonyl, fmoc,		
	triphenyl methyl groups and their deprotection,		
	Protection of carbonyls by acetal and ketal		
	formation and their deprotection, Protection of		
	carboxylic acids by ester formation and their		
	deprotection		
	Exercise: Learner will be engaged in group		
	discussion to explain protective and de-		
	protection of functional groups		
Unit 4	Aromaticity: Benzenoid and non-benzenoid		
10 Hours	compounds – generation and reactions.		
	Exercise: Learner will be engaged in group		
	discussion to explain the concept of aromaticity		

Suggested Readings:

- 1. Clayden, J., Greeves, N., Warren, S., Wothers, P. (2012). Organic chemistry Organic Chemistry Oxford press.
- 2. Finar, I.L., (2012). Organic Chemistry Vol. 1, Pearson Education, UK.
- 3. Mc Murry J., Organic Chemistry, Asian Book Pvt. Ltd, New Delhi
- 4. Smith, M. B. (2013). March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley & Sons.
- 5. Ahluwalia, V. K., and Parasar R. K., (2011). *Organic Reaction Mechanism*, Narosa Publishing House (P) Ltd., New Delhi-110002.
- 6. Bansal, R. K., (2010). *A text book of Organic Chemistry*, New Age Inrternational (P) Ltd., New Delhi.
- 7. Bansal R.K., (2010). *Organic Reaction Mechanism*, New Age International (P) Ltd., New Delhi.
- 8. Kalsi, P.S., (2010). Organic Reactions and Their Mechanisms. New Age International Pub., New Delhi.
- 9. Kalsi, P.S., (2010). *Stereochemistry: Conformation and Mechanism*, New Age International (p) Ltd. New Delhi.

- 10. Morrison, R.T., Boyd, R.N. (2011). *Organic Chemistry*, Prentice- Hall of India, New Delhi.
- 11. Mukherjee, S.M. Singh, S.P., (2009). *Reaction Mechanism in Organic Chemistry*. Macmillan India Ltd., New Delhi.
- 12. Eliel, E. L., & Wilen, S. H. (2008). Stereochemistry of organic compounds. John Wiley & Sons.
- 13. Carey, F. A., Guiliano, R. M. (2012). Organic Chemistry. McGraw Hill.
- 14. Kofie, W., Caddick, S. (2016). Problems in Advanced Organic Chemistry. Auris Publishing.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion
- Demonstration

- PPT
- YouTube
- Google drive

Course Title: Bioinorganic Chemistry and Biophysical Chemistry

L	Т	Р	Credits
3	0	0	3

Paper Code: CMC.558 Course Hours: 45h

Learning outcome:

Students who successfully complete this course will be able to CLO1: Describe stereo-chemical aspects of metal complexes and their application in medicinal chemistry

CLO2: Apply the phenomenon of reaction kinetics and their applications CLO3: Apply partition coefficient of solutes in different solvent, phenomenon of adsorption and electrochemistry

Units/Hours	Content	Mapping with course learning outcome
Unit 1	Isomerism : Ligand field theory and molecular	CLO1
12 Hours	orbital theory; nephelauxetic series, structural	
	distortion and lowering of symmetry, electronic,	
	steric and Jahn-Teller effects on energy levels,	
	conformation of chelate ring, structural	
	equilibrium, Magnetic properties of transition	
	metal ions and free ions present, Effects of L-S	
	coupling on magnetic properties, Temperature	
	independent paramagnetism (TIP) in terms of	
	crystal field theory CFT and molecular orbital	
	theory (MOT), Quenching of orbital angular	
	momentum by crystal fields in complexes in	
	terms of splitting. Effect of spin-orbit coupling	

	and A, E & T states mixing, first order and second	
	order Zeeman effects. Spin paired and spin-free	
	equilibria in complexes magnetic properties of	
	polynuclear complexes involving OH, NH ₂ and CN	
	bridges.	
	Exercise: Learner will be engaged in Group	
	discussion to explain Jahn-Tailor effect.	
	Zeeman effect and CFT theory	
Unit 2	Transition Metal Complexes:	CLO1
11 Hours	Introduction, Potential energy diagram and	
	reactivity of metal complexes, ligand substitution	
	reactions, substitution reactions mechanisms,	
	labile and Inert metal complexes, Acid hydrolysis,	
	Factors affecting acid hydrolysis, Base	
	hydrolysis. Conjugate base mechanism. Anation	
	reaction. Substitution reactions in square planar	
	complexes. Trans effect. Mechanism of the	
	substitution reaction Reactions without metal	
	ligand bond cleavage, electron transfer processes	
	outer and inner sphere. The Marcus theory.	
	doubly bridged inner-sphere transfer, other	
	electron transfer reactions: two electron	
	transfers Non-complementary reaction Ligand	
	exchange via electron exchange reductions by	
	hydrated electrons Applications of metal	
	complexes in Medicinal Chemistry	
	Exercise: Learner will be engaged in Group	
	discussion to explain Potential energy diagram	
	and reactivity of Transition metal complexes	
IInit 2	Chamical Kingtian Empirical rate laws and	CI 02
	temperature dependence: complex reactions:	
10 Hours	steady state approximation determination of	
	reaction mechanisms: collision theory: Potential	
	energy surfaces; transition state theory	
	(statistical and classical treatment);	
	unimolecular reactions and Lindemann	
	mechanism; Solution kinetics factors affecting	
	reaction rate in solution. Effect of solvent and	
	ionic strength (primary salt effect) on the rate	
	constant. Secondary salt effects.	
	Exercise: Learner will be engaged in Web	
	base learning to understand the concepts of	
	chemical kinetics	

Unit 4	Chemical Equilibrium: Gibbs energy is a CLO3			
12 Hours	minimum with respect to the extent to the extent			
	of reaction, Equilibrium constant is a function of			
	temperature, Standard Gibbs energies of			
	formation is used to calculate Equilibrium			
	constant, Direction of reaction spontaneity, Van't			
	Hoff equation, Molecular partition functions and			
	related thermodynamic data.			
	Adsorption: Adsorption of solids, Gibbs			
	adsorption isotherm, BET adsorption isotherm:			
	estimation of surface area of solids, Langmuir			
	and Fredulich Isotherms, catalysis.			
	Exercise: Learner will be engaged in Web			
	base learning to understand the concepts of			
	Chemical equilibrium and adsorption			

Suggested Books

1. Drago, R. S. (1992). *Physical methods for chemists*.

2. Ebsworth, E.A.V., Rankin, D.W.H., Cracock, S. Structural Methods in Inorganic Chemistry, ELBS, 1987.

3. Cotton, F.A., Lippard, S.J. *Progress in Inorganic Chemistry*, Vol. 8, Vol. 15, Wiley Internationals.

4. Huheey, James E. (1993). *Inorganic Chemistry: Principles of Structure and Reactivity*, Harper Collins College Publishers.

5. Glasstone, S. (1951). Textbook of physical chemistry. Tata McGraw-Hill, 2007.

6. Kapoor, K. L. (2006). *Text Book of Physical Chemistry*, Macmillan Publishers.

7. Tinoco, I., Sauer, K., Wang, J. C., Puglisi, J. D., Harbison, G., & Rovnyak, D. (1995). Physical chemistry: principles and applications in biological sciences (Vol. 552, p. 553). Englewood Cliffs, NJ Prentice Hall.

8. McfQuarrie, D. A. (1997). Physical Chemistry A molecular approach (No. 539 M34).

9. Moore, J. W., & Pearson, R. G. (1961). Kinetics and mechanism. John Wiley & Sons.

- 10. Glasstone, S. (1951). Textbook of Physical Chemistry.
- 11. T. Engel, and P. Reid (2012) Physical Chemistry, Prentice-Hall.

The following are some of the modes of classroom transaction

- Lecture
- Group discussion

Demonstration •

Transaction Mode

- PPT •
- YouTube •
- Google drive •

Semester IV

Course Title: Dissertation Part-II CMC. 601 **Course Hours:**

L	Т	Р	Credits
0	0	40	20

Learning outcome:

After completing this course, the learner will be able to:

CLO1: Plan and execute experiments in the laboratory CLO2: Interpret, analyze the results and write the dissertation report.

Evaluation criteria:

- Experimentation in laboratory •
- Interpretation of result •
- Physical presentation •
- Ouestions and answers ۲
- **Report evaluation**

Mapping with course learning outcome: CLO1, CLO2

The following are some of the **modes of transaction**

1) Lecture

- 4) Seminar
- 5) Group discussion

2) Demonstration 3) **Project Method**

The following tools can be used	in different transactional modes:
PPT	
Multimedia naclzares	google drive

Multimedia packages Software tools

google drive

- Tracker •
- ChemBioDraw

Schrodinger maestro/or any freeware

- ppt/impress BLAST •
- •

Dissertation Part-1 and Part-II can be assigned by the supervisor in a group or individually.

Endnot •