CENTRAL UNIVERSITY OF PUNJAB, BATHINDA – 151001

Centre for Physical Sciences

M.Sc. Physics

Course Structure and Syllabus as per Choice Based Credit System (CBCS)

Semester I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.401</td>
<td>Research Methodology-General</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25 25 25 25</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>PHY.501</td>
<td>Mathematical Physics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25 25 25 25</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PHY.502</td>
<td>Classical Mechanics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25 25 25 25</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>PHY.503</td>
<td>Quantum Mechanics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25 25 25 25</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>PHY.504</td>
<td>Electronics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25 25 25 25</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>PHY.505</td>
<td>Electronic Circuit Laboratory</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>- - - -</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Inter-Disciplinary Elective</td>
<td>E</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25 25 25 25</td>
<td>50</td>
</tr>
</tbody>
</table>

| Total | | | | 20| 0 | 8 | 24| | 600 |

Inter-Disciplinary Courses offered by Centre for Physical Sciences (For students of other Centre)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.402</td>
<td>Concepts of Physics</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25 25 25 25</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>PHY.403</td>
<td>Physics in Everyday Life</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25 25 25 25</td>
<td>50</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.404</td>
<td>Computational Methods in Physics</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25 25 25 25</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>PHY.405</td>
<td>Computational Methods Laboratory</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>- - - -</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>PHY.506</td>
<td>Statistical Mechanics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25 25 25 25</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>PHY.507</td>
<td>Electromagnetic Theory</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25 25 25 25</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>PHY.508</td>
<td>Digital Electronics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25 25 25 25</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>PHY.509</td>
<td>Digital Electronics Laboratory</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>- - - -</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>PHY.510/</td>
<td>Modern Physics Laboratory/ Nanostructured Materials</td>
<td>E</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>- - - -</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PHY.511</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. No.</td>
<td>Paper Code</td>
<td>Course Title</td>
<td>Course Type</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Cr</td>
<td>% Weightage</td>
<td>E</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>PHY.601</td>
<td>Solid State Physics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>PHY.602</td>
<td>Nuclear and Particle Physics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PHY.603</td>
<td>Atomic and Molecular Physics</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>PHY.604/ 605</td>
<td>Elective Course – I</td>
<td>E</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>PHY.606</td>
<td>Solid State Physics Laboratory</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>PHY.607</td>
<td>Nuclear Physics Laboratory</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Humanities for Science Students</th>
<th>E</th>
<th>2</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>24</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modern Physics Laboratory/ Nanostructured Materials Laboratory (Elective Laboratory)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.510</td>
<td>Modern Physics Laboratory</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>PHY.511</td>
<td>Nanostructured Materials Laboratory</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Semester III

Elective Course-I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.604</td>
<td>Advanced Quantum Mechanics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>PHY. 605</td>
<td>Fundamentals of Density Functional Theory</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>
Semester IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.406</td>
<td>Research Methodology-Research Techniques</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>PHY.608/</td>
<td>Elective Course-II</td>
<td>E</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PHY.609</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PHY.610/</td>
<td>Elective Course-III</td>
<td>E</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PHY.611</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PHY.612/</td>
<td>Elective Course-IV</td>
<td>E</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PHY.613</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PHY.599</td>
<td>Seminar</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>PHY.600</td>
<td>Dissertation</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>8</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Elective Course-II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.608</td>
<td>Advanced Solid State Physics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>PHY.609</td>
<td>Introduction to Nanophysics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Elective Course-III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHY.610</td>
<td>Thin Films and Nanoscience</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>PHY.611</td>
<td>Modern Functional Materials</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Elective Course-IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>% Weightage</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PHY.612</td>
<td>Characterization of Nanomaterials</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PHY.613</td>
<td>Modelling of Materials</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Abbreviation:

A: Continuous Assessment
B: Mid-Term Test-1
C: Mid-Term Test-2
D: End-Term Exam (Final)

C: Core; E: Elective and Interdisciplinary; F: Foundation; L: Lectures; T: Tutorial; P: Practical; Cr: Credits.
Semester I

Course Title: Research Methodology-General
Paper Code: PHY.401
Total Lectures: 30

<table>
<thead>
<tr>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Objective: The course Research Methodology - General has been framed to introduce basic concepts of Research Methods. The course covers preparation of research plan, reading and understanding of scientific papers, scientific writing, research proposal writing, ethics, plagiarism, laboratory safety issues etc.

Unit-I
Introduction: Meaning and importance of research, Different types and styles of research, Role of serendipity, Critical thinking, Creativity and innovation, Hypothesis formulation and development of research plan, Art of reading and understanding scientific papers, Literature survey, Interpretation of results and discussion.

Unit-II
Entrepreneurship and Business Development: Importance of entrepreneurship and its relevance in career growth, Types of enterprises and ownership.

Unit-III
Scientific and Technical Writing: Role and importance of communication, Effective oral and written communication, Scientific writing, Research paper writing, Technical report writing, Making R and D proposals, Dissertation/Thesis writing, Letter writing and official correspondence, Oral and poster presentation in meetings, Seminars, Group discussions, Use of modern aids; Making technical presentations.

Unit-IV
Research and Academic Integrity: Plagiarism, Copyright issues, Ethics in research, and case studies.
Laboratory Safety Issues: Lab, Workshop, Electrical, Health and fire safety, Safe disposal of hazardous materials.

Recommended Books:
1. S. Gupta, Research Methodology and Statistical techniques (Deep and Deep Publications (P) Ltd. New Delhi, India) 2005.
Course Title: Mathematical Physics
Paper Code: PHY.501
Total Lectures: 60

Course Objective: The course on Mathematical Physics is introduced to familiarize the students with the idea about transformation of coordinates and complex functions, special functions, group theory, and tensors which will be useful in understanding theoretical treatment and for developing a strong background to pursue research in theoretical physics.

Unit-I

Vector Algebra and Matrices: Dimensional analysis, Vector algebra and vector calculus, Linear algebra, matrices, Caley-Hamilton theorem, Eigen values and Eigen vectors, curvilinear coordinates.

Delta, Gamma, and Beta Functions: Dirac delta function, Properties of delta function, Gamma function, Properties of Gamma and Beta functions.

Unit-II

Special Functions: Legendre, Bessel, Hermite and Laguerre functions, recurrence relations, Orthogonality and special properties. Associated Legendre functions: recurrence relations, Parity and orthogonality, functions, Green’s function, Tensors, Introductory group theory:SU(2), O3.

Unit-III

Unit-IV

Differential Equations: Linear ordinary differential equations of first and second order, Partial differential equations (Laplace, wave and heat equation in two and three dimensions), Boundary value problems and Euler equation.

Recommended Books:
Objective:
The overall goal of this course is to provide tools and applications of classical mechanics that student can use these in various branches of physics. Student will gain solid understanding of classical mechanics (Newton’s laws, Lagrangian mechanics, conservation principles, Hamiltonian formalism, Hamilton - Jacobi theory, central force, scattering, rigid body dynamics, small oscillations and special relativity). Establish firm physics and math foundation on which student can build a good carrier in physics.

Unit-I

Lagrangian Formalism: Newton’s laws, Classification of constraints, D’Alembert’s principle and its applications, Generalized coordinates, Lagrange’s equation for conservative, non-conservative and dissipative systems and problems, Lagrangian for a charged particle moving in an electromagnetic field, Cyclic-coordinates, Symmetry, Conservations laws, Invariance and Noether’s theorem.

Hamiltonian Formalism: Variational principle, Principle of least action, Hamilton’s principle, Hamilton’s equation of motion, Lagrange and Hamilton equations of motion from Hamilton's principle, Hamilton’s principle to non-conservative and non-holonomic systems, Dynamical systems, Phase space dynamics and stability analysis.

Unit-II

Canonical Transformations and Hamilton - Jacobi theory: Canonical transformation and problems, Poisson brackets, Canonical equations in terms of Poisson bracket, Integral invariants of Poincare, Infinitesimal canonical transformation and generators of symmetry, Relation between infinitesimal transformation and Poisson bracket, Hamilton–Jacobi equation for Hamilton's principal function, Linear harmonic oscillator problem by Hamilton-Jacobi method, Action angle variables, Application to Kepler’s problem.

Unit-III

Rigid Body Dynamics: Euler’s angles, Euler’s theorem, Moment of inertia tensor, Non-inertial frames and pseudo forces: Coriolis force, Foucault’s pendulum, Formal properties of the transformation matrix, Angular velocity and momentum, Equations of motion for a rigid body, Torque free motion of a rigid body - Poinsot solutions, Motion of a symmetrical top under the action of gravity.

Two Body Problems: Central force motions, Reduction to the equivalent one-body problem, Differential equation for the orbit, Condition for closed orbits (Bertrand’s theorem), Virial theorem, Kepler’s laws and their derivations, Classification of orbits, Two body collisions, Scattering in laboratory and centre-of-mass frames.

Unit-IV

Theory of Small Oscillations: Periodic motion, Types of equilibria, General formulation of the problem, Lagrange’s equations of motion for small oscillations, Normal modes, Applications to linear triatomic molecule, Two and three coupled pendulums, Double pendulum and N-Coupled oscillators.
Special Theory of Relativity: Lorentz transformations and its consequences, Relativistic kinematics and mass energy equivalence, Relativistic Lagrangian and Hamiltonian, Four vectors, Covariant formulation of Lagrangian, Hamiltonian and Electrodynamics.

Recommended books:

Course Title: Quantum Mechanics

Paper Code: PHY.503

Total Lectures: 60

Course Objective:
The objective of this course is to develop familiarity with the physical concepts of quantum mechanics and its mathematical formulation. Student will learn basics of the subject and make them understand the concept of operators, observables, Schrödinger equation and applies it to simple physical systems, angular momentum, scattering and perturbation theories with emphasis on the physical structure of the theory.

Unit-I

Wave Mechanics: Schrödinger wave equation (Time dependent and time independent), Postulates of quantum mechanics, Probability current density and conservation of probability, Wave-function in coordinate and momentum representations, Free particle wave function, Observables, Hermitian operators, Expectation values, Ehrenfest's theorem, Stationary states, Superposition principle, Commutation relations.

Unit-II

Applications of Schrödinger Wave Equation: Eigen value problems; Particle in one dimensional box, Potential step, Square well, Tunneling through barrier, Linear harmonic oscillator, Spherically symmetric potential, Hydrogen atom.

Unit-III

Scattering Theory: Elementary Scattering theory, Central force problem, Partial wave analysis, Phase shifts, Optical theorem, Bound states and resonances, Scattering cross section, Green’s functions, Born approximation, Scattering for different kinds of potentials, Applications.

WKB Approximation and its Applications: WKB approximation, Development and validity of WKB approximation, Application of WKB technique to barrier penetration, Cold emission of electrons from metals, Alpha-decay of nuclei, Relativistic quantum mechanics: Klein-Gordon and Dirac equations.

Unit-IV

Time-independent Perturbation Theory and its Applications: Stationary perturbation theory: Degenerate case, Variational methods, Polarizability of hydrogen, Non-degenerate perturbation theory, Harmonic oscillator subject to perturbing potential, Degenerate perturbation theory, Stark effect, spin orbit coupling, Fine structure of hydrogen, Zeeman effect.

Recommended books:

Course Title: Electronics
Paper Code: PHY.504
Total Lectures: 60

Course Objective: The course on Electronic Circuits Theory is introduced to familiarize the students with the idea of electronic devices, circuits, operations, signal processing and applications.

Unit-I

Network Theorems: Superposition theorem, Thevenin’s and Norton’s theorems, A. C. equivalent circuits of networks with active devices.

Power Supplies: Fourier transforms, Half-wave, Full-wave and bridge rectifiers with capacitive input, Inductance input, T and π filters, Regulated power supplies: Shunt regulated power supplies using Zener diodes.
Unit-II

Transistor Amplifiers: Theory of semiconductors, Semiconductor devices: diode, homo and hectojunction devices, Transistor, Device structure and characteristics, Amplifiers, Frequency dependence and applications, Impedance matching, H and R parameters and their use in small signal amplifiers, Conversion formulae for the h-parameters of the different transistor configurations, Analysis of a transistor CE amplifier at low frequencies using h-parameters, CE amplifier with unbypassed emitter resistor, Emitter follower at low frequencies, Emitter-coupled differential amplifier and its characteristics, Cascaded amplifiers, Transistor biasing, Self-bias and thermal stability, Noise reduction, Low frequency power amplifiers, High frequency devices.

Unit-III

Optoelectronic Devices and Transducers: Solar cell, Photo detector and LEDs, Transducers, Measurement and control, Shielding and grounding.

Field Effect Transistor: Field effect transistor and its small signal model, CS and CD amplifiers at low frequencies, Biasing the FET, CS and CD amplifiers at high frequencies.

Unit-IV

Feedback: The gain of an amplifier with feedback, General characteristics of negative feedback/instrumentation amplifiers, Stability of feedback amplifiers, Barkhausen criteria, Grain and phase margins, Compensation, Sinusoidal oscillators: RC oscillators: Phase shift and the Wien’s bridge oscillators, LC oscillators, Frequency stability and the crystal oscillators, lockin detector, Box Car integrator and modulation techniques.

Operational Amplifier and Their Applications: Characteristics of an ideal operational amplifier, Amplification, Applications of operational amplifiers: Inverting and non-inverting amplifiers, Summing circuits, Integration and differentiation, Waveform generators signal conditioning and recovery.

Recommended books:

Course Title: Electronic Circuit Laboratory

Paper Code: PHY.505

Total Hours: 120

Course objective: The laboratory exercises have been so designed that the students can verify some of the concepts learnt in the electronic circuit theory classes. During these laboratory they will get sufficient training to carrying out precise measurements and handling sensitive equipment.
Student has to perform any of eleven experiments from the following experiments.

1. Power supplies: Bridge rectifiers with capacitive input filters.
3. Clipping and Clamping along with CRO.
5. Determination of h-parameters in the CE configuration using the measured input and output characteristics of a BJT.
6. Common Source and Common Drain Amplifiers using JFET.
7. RC Oscillators: Phase shift oscillator using RC ladder network as the phase shifting Network.
8. Wien’s Bridge Oscillator.
12. Multivibrators – Bistable, Monostable and Free Running multivibrators

Recommended books:

Course Title: Concepts of Physics

Paper Code: PHY.402

Total Lectures: 30

Course Objective: The course Concepts of Physics introduces basic concepts of physics and science for non-physics students. The course has been framed to provide understanding to the non-physics students.

Unit-I

Measurement: SI Units, Dimensional analysis, Errors and uncertainties, Scalars and vectors.

Mechanics: Motion, Force and Newton's laws, Momentum, Projectile and circular motions, Gravitation, Planetary motion and earth satellites, Communication satellites, Work, Energy conversion, Power and energy, Energy and environment, Rotational
motion. Kinematics of uniform circular motion, Centripetal acceleration, Centripetal force.

Unit-II

Properties of Matter: Three states of matter, Binding forces, Fluid pressure and thrust, Applications of fluid pressure, Pascal law, Archimedes principle, Capillary action, Bernoulli's principle, Viscosity.

Wave Motion: Progressive waves, Transverse and longitudinal waves, Polarisation, Determination of frequency and wavelength, Superposition, Stationary waves.

Unit-III

Heat and Sound: Internal energy, Temperature scales, Specific heat capacity, Specific latent heat, First law of thermodynamics, The ideal gas equation, Kinetic energy of a molecule, Measurement of heat and temperature, Clinical thermometer, Heat transfer, Thermos flask, Effect of pressure on boiling point and melting point, Heat engines, Steam engine, Diesel engine, Sound and music, Reverberation, Acoustics of building, Recording and reproduction of sound in film.

Unit-IV

Electricity and Magnetism: Coulomb's law, Action of points, Lightening arrester, Ohm's law, Electric power, Electrical safety, Electromagnetic induction, Faraday's law, Lenz law, Transformers.

Light: Interference, Diffraction, Two-source interference patterns, Diffraction grating, Optical instruments.

Nuclear Phenomena: Nuclear energy, Fission and fusion, Nuclear power plants, Atom bomb and hydrogen bomb.

Recommended Books:
3. B. Lal and Subramaniam, Electricity and Magnetism (Ratan Prakashan Mandir, Agra, India) 2013.

Course Title: Physics in Everyday Life

Paper Code: PHY.403

Total Lectures: 30

Course Objective: For non-physics students, the course introduces physics and science in everyday life, considering objects from our daily environment and focusing on their principles of operation, histories, and relationships to one another.

Unit-I

Physics in Earth's Atmosphere: Sun, Earth's atmosphere as an ideal gas; Pressure, temperature and density, Pascal's Law and Archimedes' Principle, Coriolis acceleration and weather systems, Rayleigh scattering, Red sunset, Reflection, refraction and dispersion of light, Total internal reflection, Rainbow.
Unit-II (07)

Physics in Human Body: The eyes as an optical instrument, Vision defects, Rayleigh criterion and resolving power, Sound waves and hearing, Sound intensity, Decibel scale, Energy budget and temperature control.

Unit-III (08)

Physics in Sports: The sweet spot, Dynamics of rotating objects, Running, Jumping and pole vaulting, Motion of a spinning ball, Continuity and Bernoulli equations, Bending it like Beckham, Magnus force, Turbulence and drag.

Unit-IV (07)

Physics in Technology: Microwave ovens, Lorentz force, Global Positioning System, CCDs, Lasers, Displays, Optical recording, CD, DVD Player, Tape records, Electric motors, Hybrid car, Telescope, Microscope, Projector etc.

Recommended Books:

3. B. Lal and Subramaniam, Electricity and Magnetism (Ratan Prakashan Mandir, Agra, India) 2013.
Semester II

Course Title: Computational Methods in Physics
Paper Code: PHY.404
Total Lectures: 30

Course Objective: The course on Computational Methods has been framed to equip the students of M.Sc. Physics with knowledge of programming in C, roots of equation, interpolation, curve fitting, numerical differentiation, numerical integration, solution of ordinary differential equations and probability.

Unit-I

Programming with C: Introduction to the concept of object oriented programming, Advantages of C over conventional programming languages, Introduction to classes, objects, C programming syntax for Input/Output, Operators, Loops, Decisions, Simple and inline functions, Arrays, Strings, Pointers.

Unit-II

Roots of Algebraic and Transcendental Equations: Element of computational techniques: roots of functions, Interpolation, Extrapolation, One point and two-point iterative methods such as bisection method and Newton Raphson methods.

Unit-III

Integration and Differential: Integration by Trapezoidal and Simpson’s rule, Solution of first order differential equation using Runge-Kutta methods, Finite difference methods.

Data Interpretation and Error analysis: Dimensional analysis, Precision and accuracy, error analysis, Propagation and errors.

Unit-IV

Least square fitting: Least square fitting, Linear and nonlinear curve fitting, Chi square test.

Random numbers: Introduction to random numbers, Monte Carlo method for random number generation.

Probability Theory: Elementary probability theory, Random variables, Binomial, poisson and normal distributions, Central limit theorem.

Recommended Books:
2. Y. Kanetkar, Let Us C (BPB Publications, New Delhi, India) 2012.
Course Title: Computational Methods Laboratory
Paper Code: PHY.405
Total Hours: 60

Course objective: The laboratory exercises have been so designed that the students learn to verify some of the mathematical concepts. They are trained in carrying out numerical problems using C language.

Student has to perform at least eight experiments out of the following list of experiments.

1. Data handling: find standard deviation, mean, variance, moments etc. of at least 25 entries.
2. Choose a set of 10 values and find the least squared fitted curve.
3. To find the roots of quadratic equations.
4. Perform numerical integration on 1-D function using Simpson rules.
5. Perform numerical integration on 1-D function using Trapezoid rule.
6. To generate random numbers between (i) 1 and 0, (ii) 1 and 100.
7. To find the value of π using Monte Carlo simulation.
8. To find the solution of differential equation using Runge-Kutta method.
9. To find the solution of differential equation using Euler’s method.
10. To find the value of y for given value of x using Newton’s interpolation method.

Recommended Books:
2. Y. Kanetkar, Let Us C (BPB Publications, New Delhi, India) 2012.

Course Title: Statistical Mechanics
Paper Code: PHY.506
Total Lectures: 60

Course Objective: This course is designed to provide basic concept of thermodynamics and statistical mechanics to M.Sc. Physics students. The course has been framed to teach the techniques of ensemble theory to understand the macroscopic properties of the matter in bulk in terms of its microscopic constituents.

Unit-I
Unit-II

Canonical Ensemble: System in contact with a heat reservoir, Expression of entropy, Partition function, Free energy and its connection with thermodynamics quantities, Fluctuation of internal energy, Micro-canonical, Canonical and grand-canonical ensembles, System in contact with a particle reservoir, Chemical potential, Grand canonical partition function and grand potential, Fluctuation of particle number, Chemical potential of ideal gas.

Unit-III

Classical and Quantum Statistics: Black body radiation and Plank’s distribution law, Quantum Liouville theorem, Identical particles in B-E and F-D distributions, Quantum mechanical ensemble theory, Super-fluidity in liquid He II, First and second order phase transitions, Low temperature behaviour of Bose and Fermi gases, Ising model, Mean-field theory in zeroth and first approximations, Exact solution in one dimension.

Unit-IV

Ideal Bose and Fermi Gas: Ideal gas in different quantum mechanical ensembles, Equation of state, Bose-Einstein condensation, Equation of state of ideal Fermi gas, Fermi gas at finite temperature. Thermodynamics, Pauli paramagnetism, Landau diamagnetism, Ferromagnetism, de Hass van Alphen effect, Principle of detailed balance.

Diffusion: Diffusion equation, Random walk and Brownian motion, Introduction to nonequilibrium processes.

Recommended books:

Course Title: Electromagnetic Theory
Paper Code: PHY.507
Total Lecture: 60

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Course objective: The Electromagnetic Theory is a course that covers electrostatics, magnetostatics, dielectrics, and Maxwell equations. The course has also been framed to solve the boundary value problems. The course contains the propagation of electromagnetic waves in dielectrics, metals and plasma. The course also covers the motion of relativistic and non-relativistic charged particles in electrostatic and magnetic fields.

Unit-I

Electrostatics: Gauss’s law and its applications, Work and energy in electrostatics, Electrostatic potential energy, Poisson and Laplace equations, Uniqueness theorem I & II, Energy density and capacitance.

Multipoles and Dielectrics: Multipole expansion, Multipole expansion of the energy of a charge distribution in an external field, Dielectrics and conductors, Gauss’s law in the presence of dielectric, Boundary value problems with dielectrics, Molar polarizability and electrical susceptibility, Electrostatic energy in dielectric media.

Unit-II

Magnetostatics: Biot-Savart law and Ampere’s theorem, Electromagnetic induction, Vector potential and magnetic induction for a circular current loop, Magnetic fields of a localized current distribution, Boundary condition on B and H, Uniformly magnetized sphere.

Magnetic Fields in Matter: Magnetization, Dia, para and ferro-magnetic materials, Field of a magnetized object, Magnetic susceptibility and permeability.

Unit-III

Maxwell’s Equations: Maxwell’s equations in free space and linear isotropic media, Boundary conditions on the fields at interfaces.

Time Varying Fields and Conservation Laws: Scalar and vector potentials, Gauge invariance, Lorentz gauge and Coulomb gauge, Poynting theorem and conservations of energy and momentum for a system of charged particles, EM fields.

Plane Electromagnetic Waves and Wave Equations: EM wave in free space, Dispersion characteristics of dielectrics, Waves in a conducting and dissipative media, Reflection and refraction, Polarization, Fresnel’s law, Interference, Coherence and diffraction, Dispersion relation in plasma, Skin effect, Transmission lines and wave guides.

Unit-IV

Radiation from Moving Point Charges and Dipoles: Retarded potentials, Lienard-Wiechert potentials, Radiation from a moving point charge and oscillating electric and magnetic dipoles, Dipole radiation, Multipole expansion for radiation fields. Relativistic Electrodynamics: Lorentz transformation law for the electromagnetic fields and the fields due to a point charge in uniform motion, Field invariants, Covariance of Lorentz force equation and dynamics of a charged particle in static and uniform electromagnetic fields, Lorentz invariance of Maxwell equations, Energy-momentum tensor and the conservation laws for the electromagnetic field.

Recommended books:
4. J.D. Jackson, Classical Electrodynamics (Wiley India (P) Ltd., New Delhi, India) 2004.
Course Title: Digital Electronics
Paper Code: PHY.508
Total Lectures: 60

Course Objective: The course on Digital Electronics is introduced to familiarize the students with the idea of logic in designing of electronic devices, circuits, operations, data signal processing and applications.

Unit-I
Digital Circuits: Logic gates and their realization using diodes and transistors, Boolean algebra, Boolean equation of logic circuits, De-Morgan theorem, Method of realization a circuit for given truth table, Sum of product (SOP) and product of sum (POS) representation, Karnaugh map and their applications, Half adder and full adder circuits, Half subtractor and full ssubtractor.

Unit-II
Combinational Circuits: Design procedure, Adders-subtractors, Carry look ahead adder, BCD adder, Magnitude comparator, Multiplexer/demultiplexer, Encoder/decoder, Comparator, Parity checker, Code converters, Implementation of combinational logic.

Unit-III
Sequential Circuit: SR, JK, D and T flip flop, Master slave flip flops, Triggering mechanism of flip flop, Realization of one flip flop using other flip flops, Asynchronous/ripple counters, Synchronous counters, Shift counters, Shift registers, Universal shift register and similar circuits, MSI and LSI based design, MSI and LSI implementation on sequential circuit.

Unit-IV
Memory Devices: Classification of memories, RAM write operation and read operation, Static RAM cell and Bipolar RAM cell, Programmable logic device (PLD), Programmable logic array (PLA), Implementation of ROM and PLA.
Data Converters: Analog to digital (A/D) data converters, Digital to analog (D/A) data converters, Logic families, Microprocessors and micro controller basics.

Recommended books:
Course Title: Digital Electronics Laboratory
Paper Code: PHY.509
Total Hours: 60

Course objective: The laboratory exercises have been so designed that the students can verify some of the concepts learnt in the Digital Electronics classes. During these laboratory they will get sufficient training to carrying out precise measurements and handling sensitive equipment.

Student has to perform any of nine experiments from the following experiments.

1. Realization of universal logic gates.
2. Implementation of the given Boolean function using logic gates in both SOP and POS form.
3. Verification of logic state tables of RS and JK flip-flops using NAND & NOR gates.
4. Verification of logic state tables of T and D flip-flops using NAND & NOR gates.
5. Verification of logic state tables of master slave flip flop using NAND & NOR gates.
6. Triggering mechanism of flip flop.
7. Realization of Half adder and full adder.
8. Realization of Half subtractor and full subtractor.
11. Shift Resistor.

Recommended books:

Course Title: Modern Physics Laboratory
Paper Code: PHY.510
Total Hours: 120

Course objective: The laboratory exercises have been so designed that the students can verify some of the concepts learnt in the Atomic Molecular and Laser Physics theory classes. During this laboratory they will get sufficient training to carrying out precise measurements and handling sensitive equipment.

Student has to perform any of seven experiments from the following experiments.

1. Ionization potential by Franck Hertz experiment.
2. Photo electric effect.
3. Band gap of a semiconductor by Four Probe method.
4. Wavelength measurement of laser using diffraction grating.
5. Michelson interferometer.
6. Dual nature of electron experiment.
7. Millikan’s oil drop experiment.
8. Stefan’s law
9. Zeeman effect experiment

Recommended books:
3. K.S. Krane, Modern Physics (Wiley India (P) Ltd., New Delhi, India) 2012.

Course Title: Nanostructured Materials and Liquid Crystal Laboratory
Paper Code: PHY.511
Total Hours: 120

Course objective: The laboratory exercises have been so designed that the students can learn the different methods of nanomaterials synthesis and variety of characterization tools used for the study of the nanomaterials. It also aims to prepare the liquid crystal sample cell and study their dielectric and optical properties.

Student has to perform any of ten experiments from the following experiments:
1. Synthesis of nanomaterials by Sol-Gel techniques
2. Synthesis of nanomaterials by co-precipitation techniques
3. Microwave synthesis of nanomaterials
4. Preparation of nanomaterials by Solid State Reaction methods
5. Structure-property relations at the nanomaterials
6. Microstructure-Property relation of nanomaterials
7. UV-Visible spectral analysis of nanomaterials
8. FTIR studies of nanomaterials
9. PL analysis of nanomaterials
10. Dielectric studies of nanomaterials

*More experiments may be added or modified from time to time depending on available faculty/facilities.

Course Title: Humanities for Science Students
Paper Code: XXX.4XX
Total Hours: 30
Course Title: Solid State Physics
Paper Code: PHY.601
Total Lectures: 60

Course Objective:
The objectives of this physics course are to provide the student with a clear and logical presentation of the basic and advanced concepts and principles of solid state physics. The contents of the course are designed so as to expose the students to the topics like crystal structure, lattice vibrations, band theory of solids, magnetic properties of solids, defects, superconductivity so that they are able to use these techniques in investigating the aspects of the matter in condensed phase.

Unit-I

Crystal Structure and its determination: Bravais lattices, Crystal structures, Reciprocal lattices, Ewald sphere, X-ray diffraction, Lattice parameter determination, Atomic and crystal structure factors, Intensity of diffraction maxima, Electron and neutron diffraction, Bonding of solids.

Lattice Dynamics: Elastic properties of solids, Vibrations of linear monatomic and diatomic lattices, Acoustical and optical modes, Long wavelength limits, Optical properties of ionic crystal in the infrared region, Normal modes and phonons, Inelastic scattering of neutron by phonon, Lattice heat capacity, models of Debye and Einstein, Comparison with electronic heat capacity, Thermal expansion, Thermal conductivity.

Unit-II

Unit-III

Unit-IV

Defects and Dislocations: Point defects (Frenkel and Schottky), Line defects (slip, plastic deformation, Edge dislocation, Screw dislocation, Burger’s vector, Concentration of line defects, Estimation of dislocation density, Frank-Reid mechanism of dislocation multiplication (dislocation reaction), Surface (Planar) defects, Grain boundaries and stacking faults.
Superconductivity: Meissner effect, Type-I and type-II superconductors; Heat capacity, energy gap and isotope effect, BCS theory, London equation, Flux quantization, Coherence, AC and DC Josephson effect, Superfluity, High Tc superconductors (information only).

Recommended books:

Course Title: Nuclear and Particle Physics
Paper Code: PHY.602
Total Lectures: 60

Course Objective: The objective of the course on Nuclear and Particle Physics is to teach the students the basic of nuclear properties, nuclear interactions, nuclear decay, nuclear models, detectors, nuclear reactions and elementary particles.

Unit-I

Basic Nuclear Properties: Nuclear size, shape and charge distribution, Form factor, Mass and binding energy, Saturation of nuclear force, Abundance of nuclei, Spin, Isospin, Mirror nuclei, Parity and symmetry, Magnetic dipole moment and electric quadrupole moment.

Two Nucleon Problems: Nature of nuclear forces, Deuteron problem, RMS radius, Spin dependence of nuclear forces, Form of nucleon-nucleon potentials, Electromagnetic moment and magnetic dipole moment of deuteron, General form of nuclear force and the necessity of tensor forces. Experimental n-p scattering data, Partial wave analysis and phase shifts, Scattering length, Magnitude of scattering length and strength of scattering, Charge independence, Charge symmetry and iso-spin invariance of nuclear forces.

Unit-II

Nuclear Decay: Different kinds of particle emission from nuclei, Alpha decay, Fine structure of α spectrum, Beta and Gamma decay and their selection rules. Fermi's theory of allowed beta decay, Fermi-Curie plot, Selection rules for Fermi and Gamow-Teller transitions, Parity non-conservation and Wu's experiment, Double beta decay.

Nuclear Models: Evidence of shell structure, Single particle shell model, Its validity and limitations, Rotational spectra, Shell model, Liquid drop model, Semi empirical mass formula.

Unit-III

Detectors: Properties of radiation detectors, Gas detectors: GM counter, Proportional counters, Ionization chambers, Scintillation detectors: NaI(Tl), CsI(Tl), Photomultiplier tubes, Semiconductor diode detectors, Different kinds of silicon detectors, HPGe detectors, Slow and fast neutron detection methods.
Nuclear Reactions: Different types of nuclear reactions, Conservation laws, Reaction cross section, Reaction mechanism, Compound nuclei and direct reactions, Fusion-evaporation and fusion-fission reactions, Optical model; Super-heavy nuclei.

Unit-IV

Elementary Particle Physics: Classification of particles: Fermions and bosons, Elementary Particles and antiparticles, Quarks model, baryons, mesons and leptons, Classification of fundamental forces: Strong, Electromagnetic, Weak and Gravitational. Conservation laws of momentum, energy, Angular momentum, Parity non conservation in weak interaction, Pion parity, Isospin, Charge conjugation, Time reversal invariance, CPT invariance. Baryon and Lepton numbers, Strangeness, charm and other additive quantum numbers, Gell Mann Nishijima formula, Relativistic kinematics, K-3π decay, τ-θ puzzle.

Recommended books:

Course Title: Atomic and Molecular Physics

Paper Code: PHY.603

Total Lectures: 60

Course objective: The main objective of the course on Atomic and Molecular Physics for the students of M.Sc. Physics is to teach the knowledge of atomic, molecular, electronic, rotational, vibrational, and Raman spectra. The course also covers the basic concepts and applications of lasers.

Unit-I

Unit-II

Many Electron Atom: Independent particle model, Central field approximation for many electron atom, Slater determinant, Equivalent and nonequivalent electrons, Energy levels and spectra, Spectroscopic terms, Hund’s rule.

Unit-III

Molecular Structure: Molecular potential, Separation of electronic and nuclear wave functions, Born-Oppenheimer approximation, Molecular orbital and electronic configuration of diatomic molecules: H₂ and NO, LCAO approach, States for hydrogen molecular ion, Coulomb, Exchange and overlap integral, Shapes of molecular orbital, Sigma and pi bond.

Unit-IV

Molecular Spectra: Electronic, Vibrational and rotational spectrum of diatomic molecules, Frank-Condon principle, Raman transitions and Raman spectra, Normal vibrations of CO₂ and H₂O molecules.

Recommended Books:
Course Title: Advanced Quantum Mechanics
Paper Code: PHY.604
Total Lectures: 60
Course Objective:
Its aim is to provide a solid grounding in important applications of many-electron systems, relativistic quantum mechanics, quantum field theory and quantum measurements and quantum computing.

Unit-I

Unit-II

Unit-III

Unit-IV
Quantum Measurements and Quantum Computing: Process of measurement: Interaction-free measurement, Delayed-choice experiments, Conditional measurements, Schrödinger cats, EPR paradox: Copenhagen interpretation, Ensemble interpretation, Explanations of EPR paradox, Hidden variables and Bell’s theorem, Quantum Zeno paradox, From classical information to quantum information, Distinguishing quantum states and the no-cloning theorem, Quantum entanglement: From qubits to ebits, Quantum state teleportation, Quantum cryptography, Quantum computation, Description of teleportation.

Recommended books:
Course Title: Fundamentals of Density Functional Theory
Paper Code: PHY.605
Total Lecture: 60

Course Objective: The objectives of this course are to understand the basics of Density Functional Theory (DFT). With the increasing power of computers, DFT-based calculations are emerging as an useful tool to characterize the materials properties. This course will review the various theories/approximations necessary to understand most popular framework of modern DFT.

Unit-I

Unit-II

Unit-III
Practical Implementation of Density Functional Theory (DFT): Kohn-Sham formulation: Plane waves and pseudopotentials, Janak’s theorem, Ionization potential theorem, Self consistent field (SCF) methods, Understanding why LDA works, Consequence of discontinuous change in chemical potential for exchange-correlation, Strengths and weaknesses of DFT.

Unit-IV

Recommended Books:
Course Title: Solid State Physics Laboratory

Paper Code: PHY.606

Total Hours: 120

Course objective: The Solid State Physics laboratory experiments have been so designed that the students learn basic concept of solid state physics learnt in the theory course. Student has to perform any of ten experiments from the following experiments.

1) Determination of carrier concentration and their sign in semiconductor at room temperature by Hall Effect.
2) Dielectric constant of insulating and ferroelectric materials at room and elevated temperatures.
3) Electrons spin resonance.
4) Magnetic parameters of a magnetic material by hysteresis loop tracer.
5) To determine the magnetic susceptibility of NiSO₄, FeSO₄, CoSO₄ by Gauy's method.
6) To determine magneto resistance of a Bismuth crystal as a function of magnetic field.
7) Determination of critical temperature of high temperature superconductor and Meissner effect for a high Tc superconductor.
8) Determination of ferromagnetic to paramagnetic phase transition temperature (Tc = Curie temperature).
9) Photoconductivity measurements.
10) NMR spectrometer.
11) UV-Visible spectral analysis of nanomaterials and thin films.
12) FTIR studies of nanomaterials and thin film.
13) Dielectric studies of nanomaterials, thin films and liquid crystals.
14) FESEM micrograph study of nanomaterials and thin films.
15) TGA analysis of polymers.

Recommended books:
2. J.P. Srivastava, Elements of Solid State Physics (PHI Learning, New Delhi, India) 2011.
4. C. Kittel, Introduction to Solid State Physics (Wiley India (P) Ltd., New Delhi, India) 2014.
Course Title: Nuclear Physics Laboratory
Paper Code: PHY.607
Total Hours: 120

Course objective: The nuclear physics laboratory experiments have been so designed that the students learn to decay process, detection, and absorption learnt in the theory course.

Student has to perform ten experiments out of the following list of experiments.

1) Study of the characteristics of a GM tube and determination of its operating voltage, plateau length / slope etc.
2) Verification of inverse square law for gamma rays.
3) Study of nuclear counting statistics.
4) Estimation of efficiency of the G.M. detector for beta and gamma sources.
5) To study beta particle range and maximum energy (Feather Analysis).
6) Backscattering of beta particles.
7) Production and attenuation of bremsstrahlung.
8) Measurement of short half-life
9) Demonstration of nucleonic level gauge principle using G.M counting system and detector.
10) Beam interruption detection system to check packs for content level, or counting of individual items.
11) Scintillation detector: energy calibration, resolution and determination of gamma ray energy.
12) Alpha spectroscopy using surface barrier detectors.
13) Study of energy resolution characteristics of a scintillation spectrometer as a function of applied high voltage and to determine the best operating voltage
14) Study of Cs-137 spectrum and calculation of FWHM and resolution for a given scintillation detector.
15) Study of Co-60 spectrum and calculation of resolution of detector in terms of energy.
16) Energy calibration of gamma ray spectrometer (Study of linearity).
17) Spectrum analysis of Cs-137 and Co-60 and to explain some of the features of Compton edge and backscatter peak.
18) Unknown energy of a radioactive isotope.
19) Variation of energy resolution with gamma energy.
20) Activity of a gamma source (Relative and absolute methods).
21) Measurement of half value thickness and evaluation of mass absorption coefficient.
22) Back scattering of gamma Rays.

Recommended books:

Semester IV

Course Title: Research Methodology-Research Techniques
Paper Code: PHY.406
Total Lectures: 30

Course Objective: Research Methodology - Research Techniques has been framed to introduce to cover important experimental techniques that will help to students in carrying out experiments in their dissertation/research work.

Unit-I
Microscopic and Imaging Techniques: Basics of electron and light microscopy, Polarizing optical microscopy (POM), Fluorescent microscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Bright and dark field imaging, Scanning-probe microscopy (SPM), Atomic force microscopy (AFM), Raman spectroscopy, Ion Beam Techniques in Materials Science.

Unit-II
Spectroscopic Techniques: UV-Visible Spectroscopy, Infra red spectroscopy, photoluminescence spectroscopy, Impedance/dielectric spectroscopy.

Unit-III
Application Software: Spreadsheet applications, Word-processing applications, Presentation applications, Internet browsers, Reference management, and Image processing applications.

Unit-IV
Scientific Word Processing using LaTeX: TeX/LaTeX word processor, Document classes, Compilation of LaTeX file, Mathematical environment: Mathematical formulae and equations, Tabular environment, Generating table of contents, bibliography and citations.

Recommended Books:
Course Title: Advanced Solid State Physics L T P Credits Marks
Paper Code: PHY.608 4 0 0 4 100
Total Lectures: 60

Course Objective: The purpose of this course is to introduce students to the fundamental and advanced concepts of solid materials. The topics include Band gap in semiconductor, Plasmons, Dielectric, optical, ferroelectric properties, and Alloys.

Unit-I (13)
Fermi Surfaces and Metals: Construction of Fermi surfaces, Electron orbits, Hole orbits and open orbits, Calculation of energy bands, Experimental methods in Fermi surface studies, Cyclotron resonance.

Unit-II (13)
Semiconductor Crystals: Direct and indirect band gap, Intrinsic and extrinsic semiconductors and their equation of motion, Effective mass, Intrinsic carrier concentration, Fermi level and electrical conductivity, Metal-metal contacts, Thermoelectric effects: Diode and transistors.

Unit-III (15)

Unit-IV (19)
Optical Properties: Connection between optical and dielectric constants, Optical reflectance, Optical properties of metals, Luminescence, Types of luminescent systems, Electroluminescence, Color centers, Production and properties, Types of color centers, Excitons (Frenkel, Mott-Wannier), Experimental studies (alkali halide and molecular crystals), Raman effect in crystals, Energy loss of fast particles in a solid.

Recommended books:
Course Title: Introduction to Nanophysics
Paper Code: PHY.609
Total Lecture: 60

Course Objective: The course on Introduction to Nanophysics is introduced to familiarize the students with the idea about the Physics at nanoscale of the materials. So that they can understand about new development emerging idea in the area of nanomaterials and thin film technology.

Unit-I
Quantum Confinement: History and significant concepts, Specific heat, Phonons, Real space vs. reciprocal space, Electronic structure and related properties, Bloch theorem phonons, Nearly free electron theory, Band structure calculation methods, Thermal conductivity due to electrons and phonons, Brillouin zones, Band theory, Density of occupied states.

Unit-II
Nanostructure in Equilibrium: Two dimensional electron gas, Graphene, Carbon nanotubes (SWCNT and MWCNT), Quantum dots and quantum wires, Topological insulators, Elements of density functional theory.
Nanostructure Out of Equilibrium: Conductance quantization, Weak and strong localization, Quantum Hall effect, Quantum interferometers, Quantum pumping, Magnetic tunnel junction, Spin transfer torque, Coulomb blockade.

Unit-III
Theoretical Techniques: Boltzmann Equation, Spin and charge diffusion equation, Scattering formalism, Non-equilibrium Green function (NEGF) technique, Ion beam techniques.

Unit-IV
Applications: Nanoelectronics, Thermoelectronics and Spintronics.

Recommended Books:
Course Title: Thin Films and Nanoscience

L T P Credits Marks
4 0 0 4 100

Total Lecture: 60

Course Objective: To introduce thin film deposition techniques and study of its optical, electrical, magnetic and mechanical properties and applications of thin films. It also aims to introduce basics of nanomaterials and their synthesis via different methods and applications.

Unit-I (16)

Thin Films: Classification of thin films, Preparation methods: Electrolytic deposition, Thermal evaporation, Spray pyrolysis, Sputtering Pulse laser deposition, LB, Spin coating, Dip coating solution cast, Tape casting, Sol gel, Chemical vapour deposition, Molecular beam epitaxy, Cluster beam evaporation, Ion beam deposition, Chemical bath deposition with capping techniques, Thickness measurement and monitoring, Electrical, Mechanical, Optical interference.

Unit-II (16)

Unit-III (14)

Nanotechnology: Introduction to nanomaterials and applications, Quantum dot, tube and well, New forms of carbon: Fullerenes, Graphene, Nanowires and Nanotubes, Types of nanotubes, Formation of nanotubes, Porous silicon, Silica aerosol, Properties and uses of nanotubes, Properties of nanomaterials, Quantum size effect of nano-materials and its applications.

Unit-IV (14)

Preparation of Nanomaterials: Top-down and bottom-up approaches, Physical and chemical methods for the synthesis, Ball milling, Ion Beam, Sol-gel, Hydrothermal and Microwave synthesis etc, Sintering.

Recommended Books:
Course Objective: Physicists and Chemists are now playing an important role in the growing field of materials research. The aim of this course is to introduce students to this area of modern materials. This class will review the fundamental principles of advanced functional materials (polymers and composites, advanced ceramic materials, liquid crystals, magnetic materials, and electronic materials).

Unit-I
Polymers and Composites: Polymers, Configuration (Tacticity), Conformation (Trans, Staggered, Gauche, Eclipsed), Polymer processing: Hot molding, Film blowing, Melt spinning, Composites: Classes, Role of Matrix Materials, Mixing Rules, Conducting polymers, Polymers for LED’s and Photovoltaic applications: Materials synthesis and characterization, Fabrication of devices, Related problems.

Unit-II
Advanced Ceramic Materials: Ceramic Materials and its classification, Smart materials: Ferroelectric, Piezoelectric, Optoelectric, Semiconducting behavior, Superalloys, Shape memory alloys, Spintronics, Multiferroics, Gaint magnetoresistance (GMR), Colossal magnetoresistance (CMR), La, Bi-based Perovskite, Quasi crystals.

Unit-III
Biomaterials: Concept and assessment of biocompatibility, materials for biomedical applications: Ti-alloys, stainless steel.

Unit-IV

Recommended Books:
Course Title: Characterization of Nanomaterials

Paper Code: PHY.612

Total Lecture: 60

Course Objective: The course on Characterization of nanomaterials is introduced to familiarize the students with the idea about the various facets related to characterization and study of diverse properties of the nanomaterials and thin films so that they can understand the new development and breakthrough in the area of Nanophysics.

Unit-I

Structural and Microstructural Analysis: High resolution X-Ray diffractogram, Phase identification, Strain & particle size, Phase diagram and texture determinations, Principles of image formation, Fluorescent microscopy, Scanning electron microscopy (SEM), Bright and dark field imaging, Field emission scanning electron microscopy (FESEM), High resolution transmission electron Microscopy (HRTEM).

Unit-II

Scanning Probe Microscopy (SPM): Scanning-probe microscopy (SPM), Electron probe micro analysis, Atomic force microscopy (AFM), Scanning tunneling microscopy (STM).

Unit-III

Spectroscopic Technique: Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, Impedance spectroscopy, Dielectric spectroscopy, optical absorption spectroscopy, emission spectroscopy, Auger spectroscopy.

Unit-IV

Thermal and Mechanical Characterizations: Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic mechanical analysis, Universal tensile testing, Transport number, Electron spin resonance, UV spectrophotometer.
Recommended Books:

Course Title: Modelling of Materials

Paper Code: PHY.613

Total Lecture: 60

Course Objectives: This course will introduce the modelling of materials through modern computational tools to analyze materials at nanoscale. It is an initiative to make students familiar with the power of first principles electronic structure theory techniques in condensed matter and materials physics.

Unit-I

Materials Modelling through VASP and SIESTA: Basis Sets: plane waves versus numerical atomic orbitals basis sets, Pseudopotentials: ultrasoft versus norm conserving pseudopotentials. Numerical solutions of Kohn-Sham equations, Diagonlization procedure, SCF cycles and mixing scheme, Smearing: Gaussian, Fermi and Methfessel-Paxton smearing.

SIESTA and VASP package to perform: electronic structure calculations, relaxation of atomic positions and unit cell parameters. Structural properties: equilibrium lattice constant, cohesive energy, bulk modulus.

Unit-II

DFT Calculations for Simple Solids: Crystal structure, Reciprocal lattice, Bonding in crystal, Supercells, Face centered cubic materials, Hexagonal closed packed materials, Crystal structure prediction, Phase transformations, Reciprocal space and k-points, Choosing k-points in Brillouin zone, Energy Cutoff, DFT total energies and its relation to various properties, Geometry optimization. Electronic density of states, local density of states and atomic charges, Magnetism.
Unit-III (16)

DFT Calculations for Surfaces: Periodic boundary conditions and slab model, Calculations of surface energies, Symmetric and asymmetric slab model, Surface relaxation, Surface reconstruction, Adsorbate on surface, Surface Coverage, modelling of one-dimensional systems such as nanotubes, nanoribbons and nanowires, modelling of fullerene-like cages.

DFT Calculations of Vibrational Frequencies: Lattice vibrations and phonons, Isolated Molecules, Vibrations of a collection of atoms, Molecules on surface, Zero-point energies, Phonons and delocalization modes.

Unit-IV (14)

Calculations beyond Standard DFT: Accuracy of DFT calculations: energy, geometry, vibrational frequencies, Crystal structures and cohesive energies, adsorption energies and bond lengths. DFT+U and DFT+D method for the treatment of electron correlation, Spin-orbit coupling, GW approximation, Excited states properties: dielectric functions and absorption spectra.

Recommended Readings:

3. C. Kittel, *Introduction to Solid State Physics* (Wiley India (P) Ltd., New Delhi, India) 2007
4. www.vasp.at/index.php/documentation

<table>
<thead>
<tr>
<th>Course Title: Seminar</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: PHY.599</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Total Hours: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Title: Dissertation Research</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: PHY.600</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>Total Hours: 180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>