CENTRAL UNIVERSITY OF PUNJAB

M.Sc. in Molecular Medicine

Batch:2023-2025

Department of Human Genetics and Molecular Medicine

MSc in Molecular Medicine (Batch: 2023-2025)

Graduate Attributes

Context of Society

The students of this course will understand the significant role of cell and molecular biology, Pathophysiology of common diseases and therapeutic strategies in the broader societal context. There will be an understanding of the basics of professional ethics, research ethics, biosafety issues, and the principles of professional practice.

Enterprising and Knowledgeable

The course content will develop skills in regenerative medicine, molecular biology, and bioinformatics and cutting-edge molecular techniques through the subject content across a broad range of modules among the students. The development of skills in molecular medicine will enhance employability in the field of biomedical sciences and clinical practices. The emphasis is on student-centric learning where they solve the patterns of inheritance by drawing pedigrees and discuss the current therapeutic interventions to treat specific genetic disorders.

Digital and research methodology-based skills

The students will be able to study and learn the effective use of digital tools to support academic writing, reference management and independent study using digital resources and learning materials. The understanding of the principles of experimental design and methods will help the students to explore new scientific approaches in translational research.

MSc in Molecular Medicine (Batch: 2023-2025)

MSc in Molecular Medicine (Batch: 2023-2025)

Course Structure of the Programme

Total Credit: 85

	Core Subjects	E	Elective Courses		Foundation Courses		Total Credit
		DE	ID	SB	CF	EF/VB	
Sem-I	03 (9 Cr)	01 (3 Cr)		03 (3 Cr)	01 (3 Cr) 01 (3 Cr)		21
Sem-II	04 (12 Cr)	01 (3 Cr)	01 (2 Cr)	02 (4 Cr)			21
SEM- III	03 (9 Cr)	01 (3 Cr)		01 (3 Cr) 01 (4 Cr Dissertation)	02 (2 Cr)	01 (2 Cr)	23
SEM- IV				01 (20 Cr Dissertation)			20
Credit Score	30	9	02	34	8	02	85

DE: Discipline Elective

ID: Interdisciplinary

SB: Skill based (Practicals); Dissertation

CF: Compulsory foundation

EF: Elective Foundation

VB: Value Based

MSc in Molecular Medicine (Batch: 2023-2025)

Course Structure of the Programme Semester-I

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Course	Course Title	Course Tures	Hours			Credit
Code	Course little	Course Type	L	Т	Р	Credit
MME.506	Cell Biology	Core	3	0	0	3
HGE.507	Concepts of Genetics	Core	3	0	0	3
MME.508	Biomolecules and Metabolism	Core	3	0	0	3
HGE.509	Biostatistics and Research Methodology	Compulsory Foundation	3	0	0	3
MME.510	Molecular Biology	Compulsory Foundation	3	0	0	3
HGE.511	Concepts of Genetics (Practical)	Skill Based	0	0	2	1
MME.512	Biomolecules and Metabolism (Practical)	Skill Based	0	0	2	1
HGE.513	Biostatistics and Research Methodology (Practical)	Skill Based	0	0	2	1
	Discipline Elective Co	ourse-I (Any one of the	e follo	wing)		
HGE.515	Public Health Research and Genetic Epidemiology	DE	3	0	0	3
MME.515	Molecular and Cellular Oncology	DE	3	0	0	3
ZOL.525	Nanobiology	DE	3	0	0	3
BIM.511	Protein Engineering	DE	3	0	0	3
			Т	otal C	redits	21
Additional: ()1 non-credit course (2 hou	r) on individualized edu	ucation	plan/tu	utorials	

MSc in Molecular Medicine (Batch: 2023-2025)

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Semester-II

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Course			Hours			Credit
Code	Course Title	Course Type	L	т	Ρ	
MME.521	Stem Cell and Regenerative Medicine	Core	3	0	0	3
MME.522	Essentials of Immunology	Core	3	0	0	3
MME.523	Techniques in Molecular Medicine	Core	3	0	0	3
HGE.524	Human Anatomy and Physiology	Core	3	0	0	3
MME.525	Essentials of Immunology (Practical)	Skill Based	0	0	2	1
MME.526	Practical Course in Molecular Medicine	Skill Based	0	0	6	3
	Interdisciplinary Course-I	(For other Departm	ents	5)		
HGE. 529	Introduction to Intellectual Property Rights	IDC	2	0	0	2
ХХХ	Choose from IDC courses offered by other Departments	IDC	2	0	0	2
	Discipline Elective Cou	rse-II (select anyon	e)			
MME.527	Molecular Endocrinology and Signal Transduction	DE	3	0	0	3
HGE.527	Human Embryology and Developmental Genetics	DE	3	0	0	3
MIC.525	Microbial Pathogenicity	DE	3	0	0	3
ZOL.553	Vascular Biology	DE	2	1	0	3

MSc in Molecular Medicine (Batch: 2023-2025)

BIM.521	Big Data Analysis in Bioinformatics and Healthcare	DE	3	0	0	3
ZOL.554	Neurobiology and Degenerative Pathophysiology	DE	3	0	0	3
Total Credits 21						
Additional: 01 non-credit course (2 hour) on individualized education plan/tutorials.						

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Semester-III

Course	Course Title	Course Type	Hours			Credit
Code			L	Т	Ρ	Credit
MME.551	Molecular Basis of Human Diseases	Core	3	0	0	3
MME.552	Genetic Engineering and Recombinant Therapeutics	Core	3	0	0	3
MME.553	Trends in Molecular Medicine	Core	3	0	0	3
HGE.554	Tools in Bioinformatics (Practical)	Skill Based	0	0	6	3
	Discipline Elective C	ourse-III (select anyone)	J	1	
MME.555	Evolution and Developmental Biology	DE	3	0	0	3
HGE.555	Biosafety, Bioethics and IPR	DE	3	0	0	3
	Value Added	Course Courses	•	•		
HGE.556	Principles of Ecological Sciences	Value based	2	0	0	2
XXX	Value Added Course (From other departments)	VAC	2	0	0	2
	Compulsory F	oundation Course	L	1	1	I
HGE.558	Innovation and Entrepreneurship	Compulsory Foundation	2	0	0	2
MME.600	Dissertation Part-I	Skill Based	0	0	8	4
	Total					23
Additional: ()1 non-credit course (2 hour) o	n individualized educatior	n plar	n/tuto	orials	S.

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Semester-IV

Course	Course Title	Course Type		Hours		Credit
Code			L	Т	Р	
MME.601	Dissertation Part-II	Skill Based	0	0	40	20
Total			0	0	40	20

MSc in Molecular Medicine (Batch: 2023-2025)

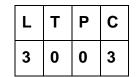
Semester I

Course Code: MME.506

Course Title: Cell Biology

Total Hours: 45

Course Learning Outcomes:


On successful completion of the course the student will be able to:

CLO1: Understanding structures and functions of various cellular organelles.

CLO2: Conceptualization of basic cellular mechanisms.

CLO3: Conceptualize the mechanisms of inter- as well as intra-cellular communications.

CLO4: Understanding the cell cycle regulation and its importance in disease biology

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Unit 1 12 Hours Introduction to the cell: Models of membrane structure, Membrane proteins, Membrane carbohydrates, Membrane transport of small molecules, Membrane transport of macromolecules and particles. Structural organization and function of intracellular organelles: The lysosomes, Ribosomes, The peroxisomes, The Golgi apparatus, The endoplasmic reticulum, Mitochondria.	CLO1
Unit 2 10 Hours Protein secretion and sorting: Protein secretion, synthesis and targeting to mitochondria, chloroplast, peroxisomal proteins, translational modification in the ER. Intracellular traffic, vesicular traffic in the secretory pathway, protein sorting in the Golgi bodies, traffic in the endocytic pathway, exocytosis.	CLO2
Unit 3 14 Hours The cytoskeleton: The nature of cytoskeleton, Intermediate filaments, Microtubules, Actin filaments, Cilia and centrioles, Organization of the cytoskeleton. Cell communication and cell signaling: Cell adhesions, Cell junctions and the extra cellular matrix, Cell-cell adhesion and communication, Cell matrix adhesion, Collagen the fibrous protein of the matrix, Non-collagen component of the extra cellular matrix.	CLO3
Unit 49 HoursCell division and cell cycle: Overview of the cell cycle and its control, molecular mechanisms for regulating mitotic and meiotic events, Amitosis, Cell cycle	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations, and discussions.

Suggested Reading:

1. Alberts, B., Heald, R., Johnson, A., Morgan, D., Raff, M. Roberts, K., and Walter, P. (2022). Molecular Biology of the cell. Garland publishers, Oxford.

MSc in Molecular Medicine (Batch: 2023-2025)

- 2. Celis, J.E. (2006). Cell biology: A laboratory handbook, Vol 1, 2, 3. Academic Press, UK.
- 3. Gupta, P.K. (2018). Cytology, Genetics and Evolution. Rastogi publications, Meerut, India.
- 4. Karp, G. (2022). Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. Inc. New Delhi, India.

Course Code: HGE.507

Course Title: Concepts of Genetics

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Evaluate the Mendelian and Non-Mendelian inheritance patterns. Gather

knowledge about gene expression regulation and sex determination,

- CLO2: Evaluate different chromosomal aberrations and ploidies
- CLO3: Know about genetic system of microbes
- CLO4: Know the details of extra chromosomal inheritance patterns

L	Т	Ρ	С
3	0	0	3

MSc in Molecular Medicine (Batch: 2023-2025)

Unit I 11 Hours	CLO1
Transmission Genetics: Mendel's laws of inheritance and its applications; concept	
of segregation, independent assortment and dominance; pedigree analysis;	
epistasis; crossing over and recombination; gene linkage and genetic mapping	
Sex determination: Sex determination in Human and Drosophila; X-chromosome	
inactivation; dosage compensation.	
Unit II	CLO2
11 Hours	
Chromosomal Aberrations and Gene mutations:	
Numerical aberrations: aneuploidy and polyploidy; structural chromosomal	
aberrations: deletion, duplication, inversion and translocation, types of mutations:	
point mutation, transitions and transversions, physical and chemical	
mutagens, Benzer experiment to elucidate fine structure of gene; Chromosomal	
changes and evolution of bread wheat.	
Unit III 11	CLO3
Hours	
Extra-chromosomal inheritance: Chloroplast: variegation in Four O' Clock plants;	
cytohets of <i>Chlamydomonas</i> ; mitochondrial inheritance: poky in N eurospora,	
petites in yeast; infectious heredity: Kappa in Paramecium, infective particles in	
Drosophila.	
Unit IV 11	CLO4
Hours	
Population Genetics	
Population Dynamics, conditions and deviations of the Hardy-Weinberg law;	
selection coefficient and fitness; heterozygous advantages; inbreeding and its	
consequences; mutation pressure and genetic load; dynamics of migration and	
genetic drifts.	

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning; co-learning techniques.

Internal assessment shall be through any of the following: Report on novel chromosome aberrations in human, Discussion on transposable elements in human diseases, Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Karyotype analysis presentations and discussions.

Suggested Readings:

1. Klug WS and Cummings MR (2014). Concepts of Genetics. Prentice-Hall.

2. Anthony, J.F. Miller, J.A. Suzuki, D.T., Richard, R.C., Gilbert, W.M. (1998). An introduction to Genetic Analysis. W.H. Freeman publication, USA.

MSc in Molecular Medicine (Batch: 2023-2025)

3. Pierce BA. Genetics: (2017) A Conceptual approach. 6th edition Freeman Publishers.

4. Hartle DL and Jones EW. (2009) Genetics: Analysis of Genes and Genomes. Jones & Bartett.

5. Atherly, A.G., Girton, J.R., Mcdonald, J.F. (1999). The Science of Genetics. Saundern College publication.

6. Snusted, D.P., Simmons, M. J. (2010). Principles of Genetics. John Wiley & Sons, New

7. Griffith, A.F., Doebley, J., Peichel C (2020). An Introduction to Genetic Analysis. 8th edition John Wiley & Sons.

Course Code: MME.508

Course Title: Biomolecules and Metabolism

L T P C 3 0 0 3

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Evaluate the basic concepts of Enzymes, Enzyme Kinetics, and its role in metabolic processes. Conceptualize the basic features of enzyme catalysis and regulation.

CLO2: Study the basic structural features of carbohydrates and its metabolism.

CLO3: Conceptualization of pathways in lipid metabolism.

CLO4: Study the structure of nucleic acids, amino acids and proteins and their metabolism.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit-1 12 Hours Enzymes: Importance & Classifications; Properties of enzymes; Isozymes; Enzyme nomenclature; Factors affecting enzyme action, Enzyme regulation; Mechanism of enzyme action; Enzyme kinetics & enzyme inhibitors; ES complex formation; Michaelis-Menten equation; Line-weaver Burk plot; Km value and its significance; Turnover number; Enzyme inhibitors, Allosteric enzymes. Ribozymes and Abzymes.	CLO1
Unit-2 11 Hours Carbohydrates: Structure and functions of monosaccharides, disaccharides, and polysaccharides; Epimers; Anomers; mutarotation. Reactions of carbohydrates. Carbohydrate's metabolism - General scheme of metabolism. Glycolysis, TCA cycle, Gluconeogenesis, Glycogenolysis, Pentose phosphate pathway, and their regulation; Oxidative phosphorylation	CLO2
Unit-311 HoursLipids: Classification - simple, compound and derived lipids with examples and their role in the human body.Lipid metabolism: Beta oxidation - Pathway and regulation. Role of acyl carnitine in fatty acyl transport. Biosynthesis of cholesterol and regulation. Formation of Ketone bodies.	CLO3
Unit-411 HoursAmino acids: Metabolism of Amino Acids.Proteins: Classification and biological importance of protein in human body;Secondary, Tertiary and Quaternary structure, Ramachandran plot.Oxygenbinding proteins – Hemoglobin and myoglobin. Hill equation, Bohr's Effect.Nucleic Acids: Metabolism of purines and pyrimidines- Salvage and de novopathways.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, Group discussion, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations, and discussions.

MSc in Molecular Medicine (Batch: 2023-2025)

Suggested Readings:

- 1. Jeremy Berg, Gregory Gatto Jr., Justin Hines, John L. Tymoczko, Lubert Stryer (2023) Biochemistry. 10th Edition, Macmillan Learning, ISBN: 9781319498504
- 2. David L. Nelson and Michael M. Cox (2017). Lehninger Principles of Biochemistry. W. H. Freeman publisher. ISBN: 9781464126116
- 3. Donald Voet and Judith G. Voet (2016). Principles of Biochemistry, 5th edition. Wiley Publisher. ISBN: 9780470547847
- 4. Palmer, T., & Bonner, P. L. (2001). Enzymes: Biochemistry. Biotechnology, Clinical Chemistry. Horwood Publishing Chichester.
- 5. Christopher K. Mathews, Kensal Edward Van Holde, and Kevin G. Ahern (2000). Biochemistry. Oxford University Press Inc. New York.
- 6. Nicholas Price, University of Glasgow, and Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins. Oxford University Press. ISBN: 9780198502296

Course Code: HGE.509

Course Title: Biostatistics and Research Methodology

L	Т	Ρ	С
3	0	0	3

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Analyze and evaluate wide variety of statistical data

CLO2: Compose statistical data and summary statistics in graphical and tabular forms.

Perform biological sampling and statistical analysis.

CLO3: Apply suitable statistical tools to analyze data

CLO4: Write and communicate scientific reports, projects, and publications.

MSc in Molecular Medicine (Batch: 2023-2025)

UNIT I 11 Hours Overview of Biostatistics: Basic concepts of statistical data and different types of tables; graphical representation of experimental data for publication; frequency distribution; measurement of central tendency and variation.	CLO1
UNIT II 11 Hours Experimental design and analysis: Basics of sampling in biological studies; different types of sampling techniques; various steps in sampling; concept of data distribution in sampling; graphical representation of data; level of significance; hypothesis testing, Errors.	CLO2
UNIT III 11 Hours Inferential Statistics: Chi-Square test: hypothesis testing, contingency, homogeneity; student's t-test: paired and unpaired, one tailed and two tailed; one-way and two-way analysis of variance (ANOVA); correlation and regression.	CLO3
UNIT IV 12 Hours Study design & Technical writing: Best practices in research and technicality of research design; interpretation and report writing, e-Library; web-based literature search engines; evaluation-based development of scientific writing skill: synopsis, research paper, poster preparation and paper presentation and dissertation.	CLO4

Transactional Modes: Lecture; Tutorial; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, student generated questions, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper.

Suggested Readings:

- 1. Rao, S.P.S.S. Richard, J. (2016). Introduction to biostatistics and research methods. 5th Ed. Phi Learning Pvt. Ltd. New Delhi.
- 2. Hoffman, J. (2019). Biostatistics for medical and biomedical practioners. 2nd Ed. Academic Press, London.
- 3. Banerjee P.K (2014). Introduction to Biostatistics. S.Chand, New Delhi.
- 4. Antonisamy, B. Christopher, S. Samuel, P.P. (2011). Biostatistics: Principles and Practice. Tata McGraw Hill. New Delhi.
- 5. Daniel W.W (2013). Biostatistics: Basic Concepts and methodology for the health sciences. 10th Ed. John Wiley and Sons Inc, New Delhi.
- 6. Norman, G. and Streiner, D. (2008). Biostatistics: The Bare Essentials. (With SPSS), 3rd Edition, Decker Inc. USA.
- 7. Sokal, R.R. and Rohlf, F.J. (1994). Biometry: The Principles and Practices of Statistics in Biological Research. W.H. Freeman publishers, USA.

MSc in Molecular Medicine (Batch: 2023-2025)

Course Code:	MME.510
Course Title:	Molecular Biology
Total Hours:	45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Conceptualization of molecular mechanisms involved in cellular functioning.

CLO2: Understanding the molecular processes of DNA replication

CLO3: Study the process of transcription in prokaryotes and eukaryotes.

CLO4: Understand the concept of Genetic code, process of translation and post translational modifications

Unit 1 Hours Nucleic acids, Genes and Genome organization: Chemical structure of DNA and base composition, Watson-Crick model, mitochondrial DNA, Chromosome Structure, Chromatin and the Nucleosome, Chromatin structure: euchromatin, heterochromatin, Constitutive and facultative heterochromatin, Regulation of chromatin structure and nucleosome assembly, typical structure of a eukaryotic genes including various regulatory elements.	CLO1
Unit 2 12 Hours DNA replication and repair: Mechanisms of DNA replication in eukaryotes, Enzymes and accessory proteins involved in DNA replication, Replication errors and proofreading, telomeres, DNA damage and repair mechanisms.	CLO2
Unit 3 11 Hours Transcription and mRNA processing: Different forms of RNA: mRNA, tRNA, rRNA and other Types of RNA Eukaryotic transcription: Initiation, Elongation & Termination, general and specific transcription factors, Regulatory elements and mechanisms of transcription regulation, RNA processing and editing, post transcriptional gene regulation.	CLO3
Unit 4 10 Hours Translation: Genetic code, eukaryotic translation, the translation machinery, mechanisms of chain initiation, elongation and termination, regulation of translation, co-and post- translational modifications of proteins.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations and discussions.

L	Т	Ρ	С
3	0	0	3

MSc in Molecular Medicine (Batch: 2023-2025)

Suggested Reading:

- 1. Sambrook, J., Fritsch, E. F., & Maniatis, T. (2015). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press New York.
- 2. Berk, A. Chris, A.K. & Krieger, M. (2021). Molecular Cell Biology. W.H. Freeman, USA.
- 3. Robertis, (2017). Cell and Molecular Biology. Lippincott Williams & Wilkins.
- 4. Karp, G. (2019). Cell and molecular biology: concepts and experiments. John Wiley & Sons.
- 5. Krebs, J. E., Goldstein, E. S., & Kilpatrick, S. T. (2017). Lewin's Genes XII. Jones & Bartlett Learning.
- 6. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., & Levine, M. (2007). Molecular Biology of the Gene Benjamin Cummings.
- 7. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2022). Molecular biology of the cell. Garland Science. New York, 1392.
- 8. Fasman, G.D. (1989). Practical Handbook of Biochemistry and Molecular Biology. CRC Press, Taylor and Francis Group, UK.
- **9.** Cooper GM. (2019) The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates

Course Code:	HGE.511
Course Title:	Concepts of Genetics (Practical)
Total Hours:	30

L	Т	Ρ	С
0	0	2	1

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Perform any experiments on Mendelian genetics and pedigree analysis
- 2. Perform linkage based genetic analysis
- 3. Design genetic experiments using common model organisms
- 4. Isolate genomic DNA for genetic analyses

List of Practical work:

MSc in Molecular Medicine (Batch: 2023-2025)

1	Problems on Monohybrid and dihybrid ratios, Multiple alleles, Epistasis	CLO1
2	Inheritance patterns in Human– Numerical on Pedigree analysis-	
	Autosomal patterns, X–linked patterns, Y–linked patterns	
3	Segregation analysis in Drosophila (Monohybrid, Dihybrid)	
4	Analysis on Linkage	CLO2
5	Linkage mapping	
6	Identification of inactivated X chromosome as Barr body	CLO3
7	Studies of a Model organism: <i>E. coli, C.elegans, D. melanogaster</i> and <i>D.</i>	
	rerio	
8	Isolation of genomic DNA and quality control	CLO4

Transactional Modes: Hands-on practical's; Demonstration; Virtual classrooms; Tutorial; Self-directed learning.

Evaluation criteria for practical courses:

• Continuous Assessment = 60 Marks

Based on performance of the students and completion of the record book (60 divided by the number of practicals)

Final Examination = 40 Marks
 Subjective question = 10 Marks
 Performing experiment = 20 Marks
 Viva voce = 10 Marks

Course Title: Biomolecules and Metabolism (Practical)

L T P C 0 0 4 2

Total Hours: 30

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Prepare buffers and solutions with varied concentration.

CLO2: Isolation of DNA from the blood samples

CLO3: Quantitative estimation of biomolecules and their role in health and disease

CLO4: Evaluate the effect of temperature, pH and substrate concentration on enzyme activity

List of Practicals

MSc in Molecular Medicine (Batch: 2023-2025)

1. Preparation of Buffers	CLO1
2. Extraction of DNA, and purity check by electrophoresis.	CLO2
 Quantitative estimation of Glucose. Quantitative estimation of Cholesterol Quantitative estimation of Proteins Quantitative estimation of Nucleic Acids 	CLO3
 Assay of enzyme activity in saliva. Effect of temperature on enzyme activity. Effect of pH on enzyme activity. 	CLO4

Suggested Readings:

- 1. Rajendran, S., Dhiman, P. (2019) Biochemistry Practical Manual. Elsevier India.
- 2. Plummer, D. (2004) An Introduction to Practical Biochemistry. Tata McGraw Hill Publishers Co. Ltd., India
- 3. Gupta, P.P., Gupta, N. (2017) Essentials of Practical Biochemistry. Jaypee Brothers Medical Publishers Pvt. Ltd. India.
- 4. Hofmann, A., Clokie, S. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. Cambridge University Press, USA
- 5. Murphy M.J., Srivastava R., Deans, K. (2018) Clinical Biochemistry, 6th Edition. Elsevier's USA.
- Swaminathan, R (2011) Handbook of Clinical Biochemistry, 2nd Edition, Publisher: World Scientific

Transactional Modes: Laboratory based practical; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Case analysis, Lab Performance, Open book techniques, Instruments Demonstration, and Group discussions.

Evaluation criteria:

- A. Continuous Assessment = **60 Marks (**Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practicals)
- B. Final Examination = **40 Marks**
 - i. Subjective question = 10 Marks
 - ii. Performing experiment = 20 Marks
 - iii. Viva voce = 10 Marks

MSc in Molecular Medicine (Batch: 2023-2025)

Course Code:	HGE.513
Course Title:	Biostatistics and Research Methodology (Practical)
Total Hours:	30

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Identify statistical data type and plot graphs using conventional tools. Perform basic statistics to check the data quality

CLO2: Test correlation and regression using two or more variables

CLO3: Perform standard parametric and non-parametric statistics on simple data CLO4: Write and communicate scientific literatures.

List of Practical work:

1	Plotting different types of graphs and statistical tables using MS excel, GraphPad and/or relevant tools	CLO1
2	Plotting normal distribution from data given	
3	Problems on: central tendency, measurement of variance (standard deviation, standard error etc.)	
4	Problems of correlation	CLO2
5	Problems of regression	
6	Chi-square test	CLO3
7	Student's t-test	
8	Analysis of variance (ANOVA)	
9	Different techniques of sampling	
10	Scientific writing skill development	CLO4
11	Practice writing research reports, synopsis, poster etc.	

L	т	Р	С
0	0	2	1

MSc in Molecular Medicine (Batch: 2023-2025)

Transactional Modes: Laboratory based practical's; demonstration, Problem solving; Self-learning.

Evaluation criteria for practical courses:

• Continuous Assessment = 60 Marks

Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practical's)

- Final Examination = 40 Marks
 - i. Subjective question = 10 Marks
 - ii. Performing experiment = 20 Marks
 - iii. Viva voce = 10 Marks

Discipline Elective Courses (Select one)

Course Code:	HGE.515
Course Title:	Public Health Research and Genetic
	Epidemiology
Total Hours:	45

L	Т	Ρ	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Develop applicable knowledge on global and local public health issues.

CLO2: Perform public health data management and result interpretation.

CLO3: Perform different epidemiological studies to identify the cause-effect relationship in variety of human traits/diseases

CLO4: Design genetic studies and perform association and linkage analysis on any relevant data.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit I 11	CLO1
Hours	
Principles and Practices of Public Health: Scope and concerns of public health;	
Determinants and measurement of health and disease; Environment and	
health; Health equity.	
Unit II 11	CLO2
Hours	
Public health management: Occupational health; Exposure and risk	
management; Health informatics; Concepts of Genomic surveillance; Clinical	
trials.	
Unit III 12	CLO3
Hours	
Fundamentals of epidemiological studies: Experimental and observational	
studies; Cohort study; Cross-sectional studies; Methods of sampling; Methods	
of association studies; Genome-wide association studies (GWAS). Systematic	
review and meta-analysis.	
Unit IV 11 Hours	CLO4
Application of genetic variations: Basics of genetic variations; genetic markers	
- SNP, CNV, Ins/dels, VNTR, STR, microsatellite; concepts of tag markers	
and haplotypes; linkage disequilibrium; quantitative genetic analysis; QTL and	
eQTL.	

Transactional Modes: Lecture; Demonstration; Tutorial; Innovative ideation; Case study; Virtual classrooms; seminar presentation; Problem solving; Co-learning techniques; Self-learning.

Internal assessment shall be through any of the following:

Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions and presentations.

Suggested Readings:

- 1. Detela, R. Gulliford, M. Karim, Q.A. Tan, C.C. (2021). Global Public Health. Oxford University Press. 7th Ed.
- 2. Park, K. (2021). Preventive and Social Medicine. Bhanot Publishers. New Delhi.
- 3. U.S Department of Health and Human Services. (2012). Principles of Epidemiology in Public Health Practice. Updated Third Ed.
- 4. World Health Organization. (2001). Health Research Methodology: A guide for training in research methods. 2nd Ed.
- 5. Celentano, D.D. and Szklo, M. (2019) Gordis Epidemiology. Elsevier. 6th Ed.
- 6. Palmer LJ, Burton PR & Smith GD (2011). An introduction to genetic epidemiology (Policy Press, University of Bristol)
- 7. Dawn TM (2011). Genetic Epidemiology (Springer)

MSc in Molecular Medicine (Batch: 2023-2025)

- 8. Austin M (2013). Genetic Epidemiology: Methods and Applications, 1st Edition (CABI Publishing).
- Course Code: MME.515

Course Title: Molecular and Cellular Oncology

Total Hours: 45

L T P C 3 0 0 3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand fundamentals of cancer.

CLO2: Gain knowledge about genetics and signal transduction involved in tumorigenesis.

CLO3: Learn about various tools used for diagnostic purposes.

CLO4: Understand basics principles of anticancer therapeutics as well as about recent developments of the field.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 13 Hours Fundamentals and Genetics of Cancer: Hallmarks of cancer, cancer classification, Mutagens, carcinogens and gene mutations, Chromosomal aberrations, tumor viruses and discovery of oncogenes, tumor suppressors and oncogenes, familial cancer syndromes, telomere regulation in cancer.	CLO1
Unit: 2 11 Hours Signal Transduction in Cancer Progression: Deregulation of Cell cycle in cancer. Cell signaling in cancer; cancer metabolism; hypoxia and metastasis, angiogenesis, tumor microenvironment. DNA damage and repair defects and their relation to cancer, cancer stem cells	CLO2
Unit: 3 11 Hours 11 Cancer Detection: General and organ specific symptoms associated with cancer, techniques for cancer detection, biomarkers for cancer detection of various stages of cancer, In-vitro assays to detect angiogenesis, metastasis, cell proliferation, mice models to study cancer (transgenic, knock-out, knock-in, xenografts and patient derived xenografts), genomic and proteomic approaches to develop better cancer markers.	CLO3
Unit: 4 10 Hours Cancer Therapies and Recent Advances in Cancer Research: Traditional Chemotherapies, radiotherapy, Onco-surgery, Bone marrow transplantation, stem cell therapies, Immunotherapy, combinational therapies, natural products as therapeutics, cancer vaccines, gene therapies, targeted anticancer therapies, CAR T and Indian traditional medicine for cancer therapies.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

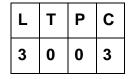
Internal assessment shall be through any of the following: Surprise Tests, case analysis, simulated problem solving, classroom assignments, term paper, presentations and discussions.

Suggested Reading:

1. DeVita, V. T., Rosenberg, S. A., & Lawrence, T. S. (2018). DeVita, Hellman, and Rosenberg's cancer. Lippincott Williams & Wilkins.

MSc in Molecular Medicine (Batch: 2023-2025)

- 2. Enders, G. H. (2010). Cell cycle deregulation in cancer. Humana Press, Springer science, New York.
- 3. Gusev, Y. (2019). Micro RNA Profiling in Cancer. Pan Standford publishing pvt.Ltd., Singapore.
- 4. Hiem, S., & Mitelman, F. (2019). Cancer Cytogenetics. IIIrd edition. Willey-Blackwell publishing, New Jersey.
- 5. Jocelyn, E. K., Elliot, S. G., Stephen, T. K. (2018). Lewin's Gene X. Jones & Barlett.
- 6. Wang, E. (2018). Cancer systems biology. CRC press, Taylor & Francis group, New York.
- 7. Jacques Robert (2015) Textbook of cell signalling in cancer, Springer science, New York.
- 8. Weinberg, Robert A. (2023), 3rd edition, The Biology of Cancer. New York: Garland Science


Related Weblink

http://www.insidecancer.org/ http://www.who.int/cancer/en/ http://www.cancer.gov/ http://www.icmr.nic.in/ncrp/cancer_reg.htm

Semester-II

Course Code: MME.521

Course Title: Stem Cell and Regenerative Medicine

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand basic stem cell biology.

CLO2: Understand basics of cell culture

CLO3: Gain conceptual knowledge about requirements for tissue engineering.

CLO4: Know regenerative medicine and its potential applications.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 11 Hours Stem Cells: Stem cells and their properties, classification of stem cells, in-vitro culture techniques, isolation, identification and characterization of stem cells, stem cells in various organs and in disease conditions; Cutting-Edge Research in Stem Cell Biology	CLO1
Unit: 2 12 Hours Cell Culturing: Basics of cell culture and media, Culturing primary cells and cell lines, suspension and adherent cultures, cell growth, growth inhibition and apoptotic studies, Embryo culture, transplantation and teratogens, teratomas, stem cell culture, organ culture.	CLO2
Unit: 3 11 Hours Tissue Engineering: Principles of tissue culture, tissue and organ culture, extracellular matrices, bioreactors, ethical issues related to stem cell therapies, stem cell banks, bone marrow transplantation; Tissue regeneration and repair- 3D bioprinting.	CLO3
Unit: 4 11 Hours Regenerative Medicine: Modes of tissue and organ delivery, tissue Engineering and transplantation techniques, immuno- isolation techniques, regeneration of bone and cartilage, Islet cell transplantation and bio-artificial pancreas, lung regeneration	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Group discussions, Surprise Tests, case analysis, simulated problem solving, classroom assignments, term paper, presentations and discussions.

MSc in Molecular Medicine (Batch: 2023-2025)

Suggested Reading:

- 1. Lanza, R., Gearhart, J. (2016). Essential of Stem Cell Biology. Elsevier Academic Press.
- 2. Lanza, R., Klimanskaya, I. (2018). Essential Stem Cells Methods. Academic Press.
- 3. Mao, J. J. & (2017). Translational approaches in tissue engineering and regenerative medicine. Artech House.
- 4. Lanza, R. (2017). Principles of Tissue Engineering, 3rd Edition. Academic Press
- Stein, G. S., Borowski, M., Luong, M. X., Shi, M. J., Smith, K. P., & Vazquez, P. (Eds.). (2011). Human stem cell technology and biology: A research guide and laboratory manual. John Wiley & Sons.
- Lanza, R., Blau, H., Gearhart, J., Hogan, B., Melton, D., Moore, M., ... & Weissman, I. (Eds.). (2014). Handbook of Stem Cells, Two-Volume Set: Volume 1-Embryonic Stem Cells; Volume 2-Adult & Fetal Stem Cells. Elsevier.

Course Code: MME.522

Course Title: Essentials of Immunology

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Evaluate basic concepts of the immune system.

CLO2: Gain knowledge about various key processes related to development of the immune system.

CLO3: Understand the concept of immune-based diseases as either a deficiency of components or excess activity as hypersensitivity.

CLO4: Apply the knowledge how the immune system is involved in diseases caused by internal or external factors.

L	Т	Ρ	С
3	0	0	3

MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 12 Hours Immune System: The cells and organs of immune system, humoral immunity- immunoglobulin, basic structure, classes and subclasses, structural and functional relationships, nature of antigen, antigen-antibody reaction, antibody diversity, class switching, B and T cell development.	CLO1
Unit: 2 11 Hours 11 Immune Effectors: Complement system, their structure, functions and mechanisms of activation by classical, alternative and lectin pathway. Th1 and Th2 response, various effector cells of the immune system: DC, NK, Monocytes etc.	CLO2
Unit: 3 12 Hours Mechanisms of Immune System Diversity: Structure and functions of Major Histocompatibility Complex (MHC) and Human Leukocyte Antigen (HLA) system, polymorphism, distribution, variation and their functions.	
Unit: 4 10 Hours Immune System in Health and Diseases: Inflammation, hypersensitivity and autoimmunity, AIDS and immunodeficiency, Transplantation immunology, vaccine development.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations and discussions.

Suggested Reading:

- 1. Kindt, T.J., Osborne, B.A. and Goldsby, R.A. (2018). Kuby Immunology. W.H. Freeman, USA.
- 2. Abbas. (2018). Cellular and Molecular Immunology.CBS Publishers & Distributors, India.
- 3. Charles, A. and Janeway, J.R. (2001). Immunobiology: The immune system in health and disease Blackwell Publishing, USA.

MSc in Molecular Medicine (Batch: 2023-2025)

- 4. Delves, P.J., Roitt, I.M. and Seamus, J.M. (2016). Roitt's Essential Immunology (Series–Essentials). Blackwell Publishers, USA.
- 5. Elgert, K.D. (2015). Immunology: Understanding the immune system. Wiley-Blackwell, USA.
- 6. Tizard. (2018). Immunology: An Introduction. Cengage Learning, Thompson, USA.
- 7. Owen, Judith A; Punt, Jenni, Stranford, Sharon A. Kuby's Immunology (2013), W.H. Freeman and Company: New York, 2013

Course Code:HGE.523Course Title:Current techniques in Molecular Genetics

L	Т	Ρ	С
3	0	0	3

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Analyze various cellular processes using biochemical techniques.

CLO2: Learn the techniques for the visualization of a broad range of biological processes and features in cell structure.

CLO3: Learn the isolation of nucleic acids and its quantitative & qualitative analysis. Their importance for clinical molecular methods. Apply the knowledge to decipher the mechanisms of molecular and cell biology.

CLO4: Learn various immuno-techniques, Mutation analysis techniques and Cell and tissue culture techniques. Conceptualize principles of these different techniques used in life sciences.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit I 11	CLO1
Hours	
Biochemical Techniques: Principle, applications and sample preparation for ultra violet, infrared and visible spectroscopy, atomic abosrption spectrometry (AAS) and ICP spectrometry (ICP-MS), high-performance liquid	
chromatography (HPLC), gas chromatography-mass spectrometry (GC	
MS); centrifugation and ultracentrifugation Unit II 11	CLO2
Hours	
Microscopy: Principle, Resolution and magnification, parts of compound microscope, sample preparation, principal and applications-light microscopy, phase contrast microscopy, fluorescent microscopy; confocal microscopy and electron microscopy	
UNIT III 11 Hours	CLO3
Nucleic acids: Isolation, purification and analysis of nucleic acids; electrophoresis: principle of gel electrophoresis, polyacrylamide gel electrophoresis (PAGE and SDS-PAGE), agarose gel electrophoresis, pulse field gel electrophoresis (PFGE) and 2-Dimensional gel electrophoresis; polymerase chain reaction (PCR): principle, types and applications; PCR based markers:, SNPs; blotting techniques: southern, northern, western, dot blotting and hybridization; DNA fingerprinting.	
UNIT IV 12	CLO4
Hours Flow Cytometry: Cell sorting; hybridoma technology: production of antibodies; histochemical and immuno techniques;; developing monoclonal and polyclonal antibodies; immunocytochemistry, radioimmunoassay (RIA); enzyme linked immunosorbent assay (ELISA) and autoradiography. Mutation analyses techniques: Restriction mapping, SSCP analyses, DNA sequencing-manual and automated methods. Cell and tissue culture techniques: Plants and animals.	

Transactional Modes: Lecture; Demonstration; Tutorial; Students visit to central instrument facility, Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Interview on various microscopic techniques; Visit to CIL and compile a report; Case studies solved by DNA fingerprinting, Assignment; In Depth interviews, Analysis of DNA sequencing data, Surprise Tests, term paper, Seminars, discussions and presentations, drawing flow charts for the techniques.

MSc in Molecular Medicine (Batch: 2023-2025)

Suggested Readings:

- 1. Brown, T.A. (2010). Gene cloning and DNA analysis: An Introduction. 6th Edition, Wiley-Blackwell Publisher, New York.
- Goldsby, R.A., Kindt, T.J. and Osborne, B.A. (2008). Kuby Immunology. 6th Edition, W. H. Freeman & Company, San Francisco.
- 3. Gupta, P.K. (2005). Elements of biotechnology. Rastogi Publications, Meerut.
- 4. Gupta, S. (2005). Research methodology and statistical techniques, Deep & Deep Publications (P) Ltd. New Delhi.
- 5. Kothari, C.R. (2008.) Research methodology(s). New Age International (P) Ltd., New Delhi
- 6. Lewin, B. (2010). Genes X, CBS Publishers & Distributors. New Delhi.
- 7. Mangal, S.K. (2007). DNA Markers in Plant Improvement. Daya Publishing House, New Delhi.
- 8. Nelson, D. and Cox, M.M. (2009). Lehninger Principles of Biochemistry. W.H. Freeman and Company, New York.
- 9. Primrose. S.B. and Twyman, R. (2006). Principles of Gene Manipulation and Genomics. Blackwell Publishing Professional, U.K.
- 10. Sambrook, J. (2006). The Condensed Protocols from Molecular Cloning: A Laboratory Manual .Cshl Press. New York.
- 11. Sambrook, J. and Russell, D.W. (2000). Molecular Cloning: A Laboratory Manual (3 Vol-set). 3rd Edition, CSHL Press, New York.
- 12. Sawhney, S.K. and Singh, R. (2005). Introductory Practical Biochemistry. Narosa Publishing House, New Delhi.
- 13. Slater, A., Scott, N.W., and Fowler, M.R. (2008). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford University Press, USA.
- 14. Wilson, K. and Walker, J. (2006). Principles and Techniques of Biochemistry and Molecular biology. 6th Edition, Cambridge University Press India Pvt. Ltd., New Delhi.
- 15. Sue Carson Heather Miller Melissa Srougi D. Scott Witherow (2019) Molecular Biology Techniques. Academic Press, USA.
- 16. Masoodi, K.Z., Maqbool, S. and Randol, R. S. (2021). Advanced methods in molecular biology and biotechnology. Academic Press, Cambridge, Massachusetts .

MSc in Molecular Medicine (Batch: 2023-2025)

Course Code: HGE.524

Course Title: Human Anatomy and Physiology

L	Т	Ρ	С
3	0	0	3

Total Hours: 45

Learning outcome

CLO1: Understand anatomical and physiological functions of various tissues.

CLO2: Understand the clinical scenarios and be able to interpret physiological function.

CLO3: Recognize the cell structure and function, histology, gross anatomy and physiology of several organ systems.

CLO4: Understand and predict the body response to stimuli. Recognize the principle of homeostasis and control mechanisms

UNIT I 11 Hours Muscular System: Structure and organization of muscles: skeletal, cardiac and smooth muscles; neuromuscular junction. Cardiovascular System: Physiological anatomy of Heart; cardiac muscle, cardiac cycle; blood constituents; hematopoiesis; cardiovascular regulation.	CLO1
UNIT II 12 Hours Digestive System: Anatomy of Gastrointestinal tract, physiology of salivary secretion, mouth and esophagus, epithelial barrier function; digestion and absorption in GIT; GIT secretions and accessory glands; BMR. Urinary System: Physiological anatomy Kidney; urine formation; regulation of volume and concentration of body fluids, KFT.	CLO2
UNIT III 11 Hours Nervous System: Organization of nervous system, synapse, generation of action potential; vision; hearing and tactile response, degeneration and regeneration of peripheral nerves. Thermoregulation and stress adaptation: Comfort zone; body temperature – physical, chemical and neural regulation; acclimatization.	CLO3
UNIT IV11 HoursRespiratory System: Anatomical considerations; mechanism of respiration;neural and chemical regulation of respiration; Physiology of high altitude,hypoxia, PFT.Reproduction: Physiology of reproductive system (male, female), pregnancy,physiology of fetus.	CLO4

MSc in Molecular Medicine (Batch: 2023-2025)

Transactional Modes: Lecture; Seminar; Tutorial; Virtual classrooms; Problem solving; Self-learning; group discussion.

Internal assessment shall be through any of the following: Assignment; In Depth interviews, Surprise Tests, term paper, Seminars, discussions, and presentations.

Suggested Readings:

- 1. Brody, T. (1998). Nutritional biochemistry. Academic Press, USA.
- 2. Devlin, T.M. (2005). Textbook of Biochemistry with clinical correlations. John
- 2. Wiley & Sons Inc. USA.
- 3. Hill, R.W, Wyse, G. A. and Anderson, M. (2008). Animal physiology. Sinauer Associates Inc. USA.
- 4. Khurana. (2006). Textbook of medical physiology. Elsevier India Pvt. Ltd.
- 5. Murray, R.K. (2009). Harper's illustrated biochemistry. Jaypee Publishers,
- 6. New Delhi, India.
- 7. Tyagi, P. (2009). A textbook of Animal Physiology. Dominant Publishers and Distributors, New Delhi, India.
- 8. Silverthorne D, (2011) Human Physiology, Pearson; 6th edition.
- 9. Sherman V. (2013) Vander's Human Physiology. McGraw-Hill 13th edition.
- 10. Jain A.K. (2021). Textbook of physiology. Avichal Publishing Company-9th
- 11. Edition.Guyton. (2015)., 13th edition Textbook of medical physiology. 11th Edition. Elsevier India Pvt. Ltd. New Delhi.
- 12. CC Chatterjee's (2022), 14th Edition, Human Physiology, CBS Publishers & Distributors Pvt.Ltd.

Course Code: MME.525

Course Title: Essentials of Immunology (Practical)

Total Hours: 30

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand the basic concepts in handling of blood samples.

CLO2: Identification of different cells in blood

CLO3: Conceptualize and understand the Immunologic techniques

CLO4: Develop understanding regarding purification of antibodies

Practicals

0	0	2

Т

Ρ

С

1

MSc in Molecular Medicine (Batch: 2023-2025)

1.	Separation of Plasma and Serum from the blood samples.	CLO1
2.	Blood film preparation and identification of cells	CLO2
3.	Separation of mononuclear cells	
4.	Lymphoid organs and their microscopic organization	
5.	Double diffusion and immuno-electrophoresis	CLO3
6.	ELISA	
7.	Radial immuno diffusion	
8.	Purification of IgG from serum	CLO4

*Practical can be modified depending upon the available faculty/facility.

Transactional Modes: Hands-on Practicals; Demonstration; Tutorial; Self-learning.

Evaluation criteria:

A. Continuous Assessment = **60 Marks**

Based on performance and good lab practices of the students and completion of the record book

(60 divided by the number of practicals)

- B. Final Examination = 40 Marks
 - i. Subjective question = 10 Marks
 - ii. Performing experiment = 20 Marks
 - iii. Viva voce = 10 Marks

Suggested Reading:

- 1. Practical immunology (2002) by F.C. Hay and O.M.R. Westwood, P.N. Nelson, L. Hudson (Wiley-Blackwell).
- 2. Clinical immunology and serology: A laboratory perspective (1997) by Stevens C.D (FA Davis Company, Philadelphia).

Course Code: MME.526

L	Т	Ρ	С	
0	0	6	3	

Course Title: Practical Course in Molecular Medicine

Total Hours: 60

Course Learning Outcomes:

At the completion of this course, the students will learn:

MSc in Molecular Medicine (Batch: 2023-2025)

CLO1: To evaluate biological experiments using the principles of molecular biology and its applied aspect.

CLO2: To analyze the experimental results based on a variety of techniques to prove biological hypotheses.

CLO3: To apply the gained knowledge in diagnosis and therapeutics practically.

CLO4: To acquire hands-on practice in cell culture and its applications in tissue engineering.

Practicals

1.	Agarose Gel Electrophoresis	CLO1
2.	Polymerase Chain Reaction for SNP Analysis	
3.	RNA extraction and cDNA synthesis	CLO2
4.	Real-Time PCR	
5.	Western Blotting	
6.	Genome Wide Association studies	CLO3
7.	Transcriptomic studies	
8.	Next Generation Sequencing	
9.	Epigenomic Studies	
10.	Cell Culturing	CLO4

Transactional Modes: Lecture; Demonstration; Virtual classrooms; Problem solving; Self-learning; YouTube demonstrations; Lab performances.

Evaluation criteria for practical courses:

• Continuous Assessment = 60 Marks

Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practical's)

• Final Examination = 40 Marks

Subjective question = 10 Marks Performing experiment = 20 Marks Viva voce = 10 Marks

MSc in Molecular Medicine (Batch: 2023-2025)

Interdisciplinary Courses

Course Code:	HGE.529
Course Title:	Introduction to Intellectual Property Rights
Total Hours:	30

L	Т	Ρ	С
2	0	0	2

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Understand the concept and genesis of IP

CLO2: Differentiate between plagiarism and fair use of copyright material

CLO3: Understand the Patent regime of India

CLO4: Conceptualize the other forms of IP namely Trademark, Industrial Design, Trade Secret, New varieties of plant

UNIT I 8	CLO1
Hours	
Brief history, current status and career opportunities in IP	
Introduction to IP, Genesis and development of concept of IPR; WIPO	
administered Treaties: Paris Convention, 1883, the Berne Convention, 1886,	
the TRIPS Agreement, 1994; the WIPO Convention, 1967; National Innovation	
and Startup Policy for Students and Faculty 2019, Career Opportunities in IP.	
UNIT II 6	CLO2
Hours	
Copyright and Layout Design Protection	
Copyright and related rights; Plagiarism; Fair Use of copyright material; Layout	
Design Protection.	
UNIT III 8	CLO3
Hours	
Patent Regime in India:	
Patents, patentability of inventions; non-patentable subject matter, Patent	
registration procedure in India; Protection of Traditional Knowledge,	
Assignment and license of patented technology; Patent filing routes for other	
countries: Convention Application and Patent Cooperation Treaty (PCT)	
application.	
UNIT IV 8	CLO4
Hours	
Other forms of IP	
Concept, Registration and term of protection: Trademark, Industrial Design, Trade Secret, Protection of New varieties of plant, Geographical Indications	

MSc in Molecular Medicine (Batch: 2023-2025)

Transactional Modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning, Class activity based

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, term paper, Seminars.

Suggested Readings:

- 1. Dutfield G. (2003). Intellectual Property Rights and the Life Science Industries: A Twentieth Century History (Globalization and Law). Routledge.
- 2. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge.
- 3. Khor M. (2002). Intellectual Property, Biodiversity and Sustainable Development: Resolving the Difficult Issues. Zed Books limited.
- 4. Ahuja, V.K. (2017). Law relating to Intellectual Property Rights. LexisNexis, India. 3rd Edition.
- 5. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge, USA.
- 6. Neeraj, P. and Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.
- 7. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

Weblinks:

- 1. World Intellectual Property Organization (https://www.wipo.int/about-ip/en/)
- Office of the Controller General of Patents, Designs & Trademarks (<u>http://www.ipindia.nic.in/</u>)

Discipline Elective-II

- Course Code: MME.527
- Course Title: Molecular Endocrinology and Signal Transduction

L	т	Ρ	С
3	0	0	3

Total Hours: 45

MSc in Molecular Medicine (Batch: 2023-2025)

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Know endocrine system and signal transduction at physiological levels

CLO2: Conceptualize and understand the endocrine cellular signaling

CLO2: Understand various human hormones.

CLO3: Develop understanding regarding disorders of the immune system.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 10	CLO1
Hours Endocrine glands, and hormones as chemical messengers, stimulus for hormone release: change in homeostasis, sensory stimulus and others.	
Unit: 2 15 Hours Cell Signaling and Mechanism of Hormone Action: G protein linked receptor family; Signal transduction pathways involving G-proteins, Adenylcyclases, Ca+2, Phosphoinositides, PI-3 Kinase, DAG, cAMP, cGMP, NO, Protein kinases (A,B,C,G), Phosphoprotein phosphatases & Phosphodiesterases. Receptor tyrosine kinase family- EGF receptor family, Insulin receptor family, & Cytokine/erythropoietin receptor family associated with non-receptor Tyrosine kinase (Signal transduction pathways involving: SH2 proteins, Ras, IRS-1, Raf, MEK, MAP kinase, JAK-STAT pathway).	CLO2
Unit: 3 10 Hours Hormones: Structures, Receptor type, Regulation of biosynthesis and release (including feedback mechanism), Physiological and Biochemical actions, Pathophysiology (hyper & hypo secretion). Hypothalamic Hormones: CRH, TRH, GnRH, PRL/PRIH, GHRH/GHRIH. Pituitary Hormones - Anterior Pituitary hormones- Growth hormone, Prolactin, POMC peptide family, LH, FSH, TSH; Posterior Pituitary: Vasopressin, Oxytocin, reproductive hormones, Other organs with endocrine function: Heart (ANP), Kidney (erythropoietin), Liver (Angiotensinogen, IGF-1), Adipose tissue (Leptin, adiponectin).	CLO3
Unit: 4 10 Hours Endocrine disorders: Gigantism, Acromegaly, dwarfs, pigmies; Pathophysiology: Diabetes insipidus. Thyroid Hormone (include biosynthesis) Goiter, Graves' disease, Cretinism, Myxedema, Hashimoto's disease. Pancreatic Hormones: Insulin, Glucagon, Diabetes type I & II. Hormones associated with obesity: Ghrelin, Leptin.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

MSc in Molecular Medicine (Batch: 2023-2025)

Internal assessment shall be through any of the following: Surprise Tests, case analysis, simulated problem solving, classroom assignments, term paper, presentations and discussions.

Suggested Reading:

- 1. Norris, D.O., & Carr, J.A. (2017). Vertebrate Endocrinology. Academic Press.
- 2. Widmaier, E.P., Raff, H., & Strang, K.T. (2013). Vander's Human Physiology. McGraw-Hill Higher Education.
- 3. Ari Sitaramayya (2012) Introduction to Cellular Signal Transduction (Hormones in Health and Disease), Springer science, New York.
- 4. Bastien D. G., IJsbrand M. K. and Peter E.R. T. (2015), 3rd edition, Signal Transduction, Academic Press, MA, USA

Course Code:	HGE.527
Course Title:	Human Embryology and Developmental
	Genetics
Total Hours:	45

L	Т	Ρ	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Conceptualize basics of reproductive physiology

CLO2: Correlate genetic regulation in different embryonic developmental stages

CLO3: Evaluate the role of biomolecules in embryonic development.

CLO4: Know different genetic and environmental triggers for post-natal development, ageing and senescence.

MSc in Molecular Medicine (Batch: 2023-2025)

CLO
1
CLO
2
CLO
3
CLO
4

Transactional Modes: Lecture; Demonstration; Tutorial; Virtual classrooms; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Readings:

- 1. Gilbert, S.F. (2013). Developmental Biology. Tenth Edition.
- 2. Slack, J.M.W. (2012). Essentiel Developmental Biology. Third Edition.
- 3. Moody, A.A. (2014). Principles of Developmental Genetics. Second Edition.
- 4. Slack, J.M.W. (2018). The Science of Stem Cells. First Edition.
- 5. Milunsky, J. & Milunsky, A. (2010). Genetic Disorders and the Fetus: Diagnosis, Prevention & Treatment. Willey Blackwell India, New Delhi.
- 6. Prakash, G. (2007). Reproductive Biology. Narosa Publication House Pvt. Ltd., New Delhi.
- 7. Sadler, T.W., Tosney, K., Chescheir, N.,C., Imseis, H., Leland, J. and Sadler-Redmond, S.,L. (2011).Langman's Medical Embryology (Longmans Medical Embryolgy). Lippincott Williams and Wilkins.

MSc in Molecular Medicine (Batch: 2023-2025)

8. Keith L. Moore BA, T. V. N. Persaud MD., Mark G. Torchia (2019 The Developing Human Clinically Oriented Embryology, Elsevier, Netherlands.

Semester-III

Course Code: MME.551

Course Title: Molecular Basis of Human Diseases

L T P C 3 0 0 3

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Acquire knowledge on basic mechanisms of non-communicable human diseases.

CLO2: Understand the molecular basis of human genetic disorders.

CLO3: Gain knowledge about molecular mechanisms underlying the pathogenesis of communicable human diseases.

CLO4: Know modern therapeutic approaches in development/clinical practice.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 11 Hours Non-Communicable Diseases: Molecular basis of: Diabetes, Chronic obstructive pulmonary disease, Cardiomyopathies, Hypertension, Cancer and neuronal disorders such as Autism, Alzheimer's and Parkinson. Schizophrenia, Mental Retardation, Major depressive disorder, Anxiety disorder	CLO1
Unit: 2 12 Hours Genetic disorders: Classifications of genetic disorders, Intersex Disorders: Male Pseudo-hermaphrodite (MPH), Female Pseudo-hermaphrodite (FPH), True Hermaphrodites (TH), Mixed gonadal dysgenesis (MGD) & Dysgenetic male pseudohermaphrodite (DMP) and Persistent Mullerian duct syndrome (PMDS), Sickle cell anemia, Thalassemia, Hemophilia and Hematopoietic Malignancies. Muscular Dystrophy. Glycogen Storage Diseases (Pompe disease, Tay Sach disease, Niemann-Pick disease)	
Unit: 3 12 Hours Communicable Diseases: Mechanisms of Infection and Therapeutic Interventions of: HIV/AIDS, SARS, TB and Hepatitis. Molecular basis of antimicrobial resistance and its detection. Molecular approaches in clinical microbiology, antimicrobial agents; Sulfa drugs; Antibiotics: Penicillin and Cephalosporins; Broad-spectrum antibiotics; Antibiotics from prokaryotes; Antifungal antibiotics.	
Unit: 4 10 Hours Novel therapies for diseases: Tyrosine kinase inhibitor, Monoclonal antibody, Chemo & Radio, Gene Therapies, Small peptides. Limitations, ethical and biosafety issues in gene therapies.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, case analysis, simulated problem solving, classroom assignments, term paper, presentations, and discussions.

Suggested Reading:

MSc in Molecular Medicine (Batch: 2023-2025)

- 1. Patch, H. S. C. (2017). Genetics for the Health Sciences. Scion Publishing Ltd., UK.
- 2. Brown, S. M., (2018). Essentials of Medical Genomics. Wiley-Blackwell.
- 3. Jocelyn, E. K., Elliot, S. G., & Stephen, T. K. (2018), Lewin's Gene X. Jones & Barlett Publishers.
- 4. Milunsky, A., & Milunsky, J. (2015). Genetic Disorders and the Fetus: Diagnosis, Prevention and Treatment, 6th Edition. Wiley-Blackwell publishers.
- 5. Trent, R. J. (2017). Molecular Medicine: Genomics to Personalized Healthcare. Academic Press.
- 6. Trent, R. J. (2015). Molecular Medicine: An Introductory Text. Academic Press.
- 7. Elles, R., & Mountford, R. (2012). Molecular Diagnosis of Genetic Diseases Series: Methods in Molecular Medicine.
- 8. Coleman, W. B., & Tsongalis, G. J. (2019). The Molecular Basis of Human Disease. Academic Press.
- 9. Nussbaum, R.L., McInnes, R. Mc., & Willard, H.F. (2017). Genetics in Medicine. Elsevier Inc., Philadelphia.
- 10. Read, A., & Donnai D. (2017). New clinical Genetics. Scion Publishing Lmt., Oxfordshire, UK.
- 11. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2021), 6th edition, Principles of neural science. McGraw-Hill, Health Professions Division.
- Course Code: MME.552

Course Title: Genetic Engineering and Recombinant Therapeutics

С
3

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Know about genetic engineering and its applications.

CLO2: Gain knowledge about various cloning, expression vectors and their importance in research.

CLO3: Understand concept of artificial chromosomes and their potential applications.

CLO4: Learn therapeutics aspect of recombinant DNA technologies

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 11 Hours Basics of Genetic Engineering: Gene manipulation tools for molecular cloning, restriction enzymes their types, cohesive and blunt and ligation, linkers, adaptors, homopolymeric tailing, transformation, transfection: chemical and physical methods, sequencing methods, gene cloning, in-silico methods of design.	CLO1
Unit: 2 11 Hours Gene Cloning Vectors: Plasmids, bacteriophages, cloning in M13 Vectors, phagemids, Lambda vectors; insertion and replacement vectors, Cosmid vectors, Artificial chromosome vectors (YACs, BACs), Animal virus derived vectors-Sv-40, retroviral vectors, Expression vectors	CLO2
Unit: 3 `11 Hours Techniques in Genetic Engineering: Isolation and Detection of DNA, RNA and proteins by Southern blotting, Northern blotting, Western blotting and in situ hybridization, Site Directed Mutagenesis, Yeast two hybrid system, phage display, characterization of expressed proteins through various biophysical, biochemical methods,	CLO3
Unit: 4 12 Hours Applications of recombinant DNA technology: Applications of rDNA in diagnosis of pathogens and abnormal genes, Gene Editing through CRISPR/CAS system, transgenic animals for production of proteins and pharmaceuticals, Biosafety and Ethical considerations in genetic engineering.	CLO4

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, case analysis, simulated problem solving, classroom assignments, term paper, presentations, and discussions.

Suggested Reading:

1. R.W. Old., & S.B. Primrose. (2017). Principles of Gene Manipulation Blackwell science.

MSc in Molecular Medicine (Batch: 2023-2025)

- 2. Bernard R. Glick., & Jack J. Pasternak. (2018) Molecular Biotechnology ASM Press Washington.
- 3. James Watson, Micheal Gilman Jan Witkowsk (2017) Recombinant DNA, CSHL, New York.
- 4. Cokin, R., & Bjorn, C. (2016). Basic Biotechnology Cambridge University press.
- 5. John E. Smith. (2019). Biotechnology by Cambridge University press.
- 6. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losicke, R. (2017). Molecular Biology of Gene by Watson CSHL Press New York.
- 7. Sambrook, J & Sambrook, R. (2018). Molecular cloning, CSHL Press, New York.
- Course Code: MME.553

Course Title: Trends in Molecular Medicine

Total Hours: 30

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- CLO1: Know about the background of Molecular Medicine.
- CLO2: Know about development of therapeutics.
- CLO3: Understand cellular microenvironment and problems of drug resistance.
- CLO4: Develop knowledge about translational research.

L	Т	Ρ	С
3	0	0	3

MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 10 Hours Introduction to Molecular Medicine, contribution of genomics, transcriptomics and proteomics in human diseases, developing novel biomarkers and therapies using high throughput technologies.	CLO1
Unit: 210HoursMolecular Medicine Therapeutics: Gene therapy and recombinant molecules in medicine and therapeutic development, pharmacogenomics.	CLO2
Unit: 3 14 Hours Signal Transduction and its Role in Human Diseases: cell signaling and human diseases, Cellular and tissue microenvironment in diseases, drug resistance with convention chemotherapies	CLO3
Unit: 4 11 Hours Advances in translational research: nano-biotechnology and its applications in molecular medicine, immunotherapies in human diseases, translational research and its contributions in disease therapeutics.	CLO4

Transactional modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, presentations and discussions.

Suggested Reading:

- 1. Littwack, G. (2018). Human Biochemistry and Disease. Academic Press.
- 2. Trent, R. J. (2016). Molecular Medicine, Fourth Edition: Genomics to Personalized Healthcare. Academic Press.
- 3. Trent, R. J. (2015). Molecular Medicine: An Introductory Text. Academic Press.
- 4. Elles, R., Mountfield, R. (2011). Molecular Diagnosis of Genetic Diseases. Springer Publication.
- 5. Liciniio, J., & Wong, M. L. (2018). Pharmacogenomics: The Search for Individualized Therapies. Wiley.

MSc in Molecular Medicine (Batch: 2023-2025)

Course Code:	HGE.554
Course Title:	Tools of Bioinformatics (Practical)
Total Hours:	60

L	Т	Ρ	С
0	0	6	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Analyze publicly available and experimental genomics data

CLO2: Analyze sequence alignment and generation of PCR oligos

CLO2: Perform in-silico prediction of protein structures and interactions

CLO3: Perform next generation sequence and microarray data analysis and functional annotation of genetic findings.

CLO4: Demonstrate physical property of biomolecules in-silico

11. 12.	sequences).	CLO1
	Primer designing for PCR and RT-PCR	CLO2
14.	Performing sequence alignment using various tools (BLAST, MSA)	
15.	Pipeline of Next generation RNA-seq/DNA sequencing analysis.	CLO3
16.	Genome wide association study and DNA microarray-data analysis	
17.	Analysis of linkage disequilibrium plots.	-
18.	Prediction of Protein structure using sequence database	CLO4
19.	Practical insights of tertiary structure prediction and comparative modeling	
20.	Protein-protein and protein-ligand docking	

Transactional Modes: Hands-on training; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Evaluation criteria for practical courses:

• Continuous Assessment = 60 Marks

Based on performance and good lab practices of the students and completion of the record book (60 divided by the number of practicals)

MSc in Molecular Medicine (Batch: 2023-2025)

Final Examination = 40 Marks
 Subjective question = 10 Marks
 Performing experiment = 20 Marks
 Viva voce = 10 Marks

Suggested Readings:

- 1. Laboratory Protocols. Third Edition. 2005. CIMMYT Applied Molecular Genetics Laboratory.
- 2. Koliantz, G & Szymanski, D.B. Genetics A Laboratory Manual. Second Edition. 2009. American Society of Agronomy, Crop Science Society of America.
- 3. Sambrook, J & Green, M.R. Molecular Cloning: A laboratory manual. Fourth Edition. 2013. Cold Spring Harbor Laboratory Press, U.S.
- 4. Pazos, F & Chagoyen, M. Practical protein bioinformatics.2015. Springer International Publishing, Switzerland.
- 5. Agostino, M. Practical Bioinformatics. 2012. Garland Science. Taylor & Francis Group. New York and London.

Discipline Elective-III

- Course Code: MME.555
- Course Title: Evolution and Developmental Biology
- Total Hours: 45

L	т	Ρ	С
3	0	0	3

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Gain knowledge on concepts related to the origin of life.

CLO2: Develop understanding regarding molecular evolution and origin of the first cell.

CLO3: Know about concepts related to developmental processes.

CLO4: Understand pathology related to mechanisms of development and differentiation.

MSc in Molecular Medicine (Batch: 2023-2025)

Unit: 1 11 Hours	CLO1
Origin of Life: History of evolutionary ideas, Modern evolution theory, Natural Selection, Adaptation, The origin of species.	
Unit: 2 11 Hours	CLO2
Paleontology and Molecular Evolution: The evolutionary time scale, Major events in the evolutionary time scale, Intimate partnership, Stages in primate evolution, Human evolution, Neutral evolution, Molecular divergence and molecular clocks, Gene duplication and divergence.	
Unit: 3 12	CLO3
Hours Basic Concepts of Development: Potency, Commitment, Specification, Induction, Competence, Determination and Differentiation, Morphogenetic gradients, Cell fate and cell lineages, Stem cells, Genomic equivalence and the cytoplasmic determinants, Imprinting, Mutants and transgenics in analysis of development.	
Unit: 4 11	CLO4
Hours	
Gametogenesis, Fertilization, embryology and neurulation: Production of gametes, Cell surface molecules in sperm-egg recognition; embryonic development and formation of germ layers in humans, fetal development, sex determination, neural tube formation.	:
Transactional Modes: Lecture: Demonstration: Tutorial: Lecture cum demo	

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Reading:

1. Darwin, C. (1956). The Origin of Species: By means of natural selection or the preservation of favored races in the struggle for life (No. 575.0162). Oxford University Press.

MSc in Molecular Medicine (Batch: 2023-2025)

- 2. Dawkins, R. (1996). The blind watchmaker: Why the evidence of evolution reveals a universe without design. WW Norton & Company.
- 3. Futuyma, D.J. (2017). Evolution. Sinauer Associates Inc. USA.
- 4. Wilt, F. H., & Hake, S. (2004). Principles of developmental biology. W.W. Norton & Company, New York, USA.
- 5. Hall, B.K., & Hallgrimsson, B. (2017). Strasburger's Evolution. Jones and Bartlett Publishers, India.
- 6. Lewin, R. (2014). Human Evolution An Illustrated Introduction. Wiley-Blackwell, USA.
- 7. Scott, F., & Gilbert, S.F. (2017). Developmental Biology. Sinauer Associates, Inc. USA.
- 8. Slack, J.M.W. (2015). Essential Developmental Biology, Wiley-Blackwell, USA.
- Barton N. H. (2007), Evolution, Cold Spring Harbor Laboratory Press, USA

Stillman Bruce (2009), Evolution: The molecular landscape, Cold Spring Harbor Laboratory Press, USA

Course Code: HGE.555

Course Title: Biosafety, Bioethics, and Intellectual Property Rights

L	т	Ρ	С
3	0	0	3

Total Hours: 45

Course Learning Outcomes:

On successful completion of the course the student will be able to:

CLO1: Interpret the bioethical issues concerning biotechnological advancements like recombinant DNA technology, cloning, gene manipulation.

CLO2: Implement biosafety while carrying out research.

CLO3: Distinguish different types of Intellectual Property Rights.

CLO4: Describe the ways of protecting traditional knowledge from Bio piracy.

MSc in Molecular Medicine (Batch: 2023-2025)

UNIT I 11 Hours Biosafety: Good laboratory practices; Risk and safety assessment from genetically engineered organisms; special procedures for r-DNA based products; biological containment (BC) and physical containment (PC); CDC biosafety levels; biohazard management.	CLO1
UNIT II 11 Hours Bioethics: Ethical considerations during research, Use of Animals for clinical research, Embryonic and adult stem cell research, assisted reproductive technologies, cloning, MTP and Euthanasia; the element of informed consent; ethical issues of the human genome project.	CLO2
UNIT III 11 Hours Intellectual Property Rights (IPRs): Various forms of IP – patents, industrial designs, trademark, geographical indications, and plant breeder's right; copyright: fair use, plagiarism; protection of indigenous intellectual property.	CLO3
UNIT IV 12 Hours Patent system: Patent filing procedure in India and ways of patent protection in other countries: Determination of patentability of inventions, filing a patent application in India: timeline, procedure involved in the granting of a patent, patent cooperation Treaty (PCT).	CLO4

Transactional Modes: Lecture; Demonstration; Virtual classrooms; Tutorial; Lecture cum demonstration; Problem solving; Case study; Self-learning.

Internal assessment shall be through any of the following:

Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Readings:

- 1. Clarke, A (2012). Genetic Counseling: Practice and Principles. Taylor & Francis
- 2. Fleming, D.O. and Hunt, D.L. (2006). Biological Safety: Principles and Practices. American Society for Microbiology, USA.
- 3. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge.
- 4. Shannon, T.A. (2009). An Introduction to Bioethics. Paulist Press, USA.
- 5. Thompson J and Schaefer, B.D (2013). Medical Genetics: An Integrated Approach. McGraw Hill.
- 6. Vaughn, L. (2009). Bioethics: Principles, Issues, and Cases. Oxford University Press, UK.
- 7. WHO. (2005). Laboratory Biosafety Manual. World Health Organization.

MSc in Molecular Medicine (Batch: 2023-2025)

- 8. Ahuja, V.K. (2017). Law relating to Intellectual Property Rights. LexisNexis, India. 3rd Edition.
- 9. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge, USA.
- 10. Neeraj, P. and Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.
- 11. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

Value added Course

Course Code:	HGE.529
Course Title:	Principles of Ecological Science
Total Hours:	30

L	Т	Ρ	С
2	0	0	2

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- CLO1: Improve their knowledge base about the basics of ecological components
- CLO2: Conceptualize the ecosystem and its components
- CLO3: Contribute to for population ecology and conservation biology
- CLO4: Improve student's aptitude for ecological science research and development

MSc in Molecular Medicine (Batch: 2023-2025)

UNIT I 6 Hours	CLO	
Environment components: Physical environment (Climate, atmosphere, light,	0L0 1	
soil, temperature); biotic environment; biotic and abiotic interactions. Ecological		
amplitude; Ecological adaptation; Ecological species concept; Ecotype & Ecads;		
K-selected & r-selected species; Concept of habitat and niche; character		
displacement.		
UNIT II 8 Hours	CLO	
Ecosystem and Ecological Succession: Ecosystem components;	2	
Productivity & energy flow; Food chain; Food web; Concepts of the trophic		
level, ecological pyramid and mineral cycling (C, N, P); primary production and		
decomposition; Kinds of ecosystems: terrestrial and aquatic; Biomes.		
Ecological Successions: Types; mechanisms; changes involved in succession;		
concept of climax.		
UNIT III 8 Hours	CLO	
Population Ecology and Conservation Biology: Characteristics of a		
population; Population dispersal; Population Growth; Biotic community:		
Ecological characteristics; Nature & Structure of community; Ecological		
interdependence & interaction; Biodiversity: Levels of diversity and its		
measurement; Components & gradients of biodiversity; Conservation of		
biodiversity; Project Tiger; Biogeographic classification of India.		
UNIT IV 8 Hours	CLO	
	4	
Applied Ecology: Environmental pollution; Air pollution: Pollutants, greenhouse		
effect, global warming, Kyoto and Montreal Protocol, ozone, acid rain. Water		
pollution: Biochemical oxygen demand, chemical oxygen demand, eutrophication; Soil pollution; Bioremediation, phytoremediation.		

Transactional Modes: Lecture; Demonstration; Tutorial; Lecture cum demonstration; Problem solving; Self-learning; MCQ practice.

Internal assessment shall be through any of the following: Surprise Tests, one sentence summary, case analysis, simulated problem solving, open book techniques, classroom assignments, homework assignments, term paper, Seminars, term papers, discussions, and presentations.

Suggested Readings:

- 1. Smith, Robert Leo, et al. "Elements of ecology." (2015): E9.
- 2. Recknagel F. 2002 Ecological Informatics: Understanding Ecology by Biologically- Inspired Computation, Springer, New York.
- 3. Odum E.P. 1983 Basic Ecology. Saunders International Edition, Japan
- 4. Michael Begon, 2020 Ecology: From Individuals to Ecosystems 5th Edition,

MSc in Molecular Medicine (Batch: 2023-2025)

Foundation Course

Total Hours: 15

Course Code: HGE.558

Course Title: Innovation and Entrepreneurship

Total Hours: 15

L	Τ	Ρ	С
2	0	0	2

Course Learning Outcomes:

On the completion of this course, the learners will:

CLO1: Understand the basic concepts of entrepreneur, entrepreneurship, and its importance.

CLO2: Aware of the issues, challenges, and opportunities in entrepreneurship.

CLO3: Aware about the support system and available policies

CLO4: Know the criterion for registration of different forms of IPRs and technology transfer requirements

MSc in Molecular Medicine (Batch: 2023-2025)

Unit I 8 Hours	CLO1
Enterpreneurial Structure:	
Nature, characteristics, functions and its role in economic development; entrepreneurial behavior and skills; role of women entrepreneurs and social enterpreneurs in society; market driven and technology driven enterpreneurship, startups	
Unit II 8 Hours	CLO2
Business plan and funding opportunities	
Business model canvas; supply and customer chains, Business to business (B2B), Direct to customer (D2C) business types and funding opportunities: marketing and sales strategy; public funded schemes and angel funding	
Unit III 7 Hours	CLO3
Blending University Research and Entrepreneurship culture:	
Pre Incubation and Incubation facilities, Idea hackathons, Policy to encourage entrepreneurship in students and faculty; case studies on the development and launch of products, and services in the field of biomedicine and genetic diagnosis	
Unit IV 7 Hours	CLO4
Intellectual Property (IP) and Technology Transfer:	
Different forms of intellectual property (IP)-patent, industrial design, trademark, copyright; technology transfer requirements and process	

Suggested Readings:

- 1. Arora, Renu (2008). Entrepreneurship and Small Business, Dhanpat Rai & Sons Publications.
- 2. Chandra, Prasaaan (2018). Project Preparation, Appraisal, Implementation, Tata Mc-Graw Hills.
- 3. Desai, Vasant (2019). Management of a Small-Scale Industry, Himalaya Publishing House.
- 4. Hockaday, J. (2020).University Technology Transfer-What it is and How to Do it, Johns Hopkins University Press
- 5. Jain, P. C. (2015). Handbook of New Entrepreneurs, Oxford University Press.

MSc in Molecular Medicine (Batch: 2023-2025)

- 6. Srivastava, S. B. (2009). A Practical Guide to Industrial Entrepreneurs, Sultan Chand & Sons.
- 7. Mietzner, D. and Schultz. C. (2021). New Perspectives in Technology Transfer, Springer.
- 8. National Innovation and startup policy for students and faculty 2019, Government Podocument <u>http://rmkcet.ac.in/RMK/NISP%20policy.pdf</u>

Course Code: MME.600

Course Title: Dissertation Part-I

Total Hours: 120

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Apply genetic and genomics techniques for research.
- 2. Construct study design
- 3. Interpret the result of a genetic experiment.
- 4. Present oral and written scientific communication skills.

The objective of dissertation part-I would be to ensure that the student learns the nuances of scientific writing. Herein the student shall have to write his synopsis including an extensive review of literature with simultaneous identification of scientifically sound (and achievable) objectives backed by a comprehensive and detailed methodology. Students may start working in the respective laboratory.

Students can opt for dissertation work in industry, national institutes or Universities in the top 100 NIRF ranking. Group dissertation can be opted, with a group consisting of a maximum of four students. These students may work using a single approach or multidisciplinary approach. Research projects can be taken up in collaboration with industry or in a group from within the discipline or across the discipline

Synopsis will be evaluated as per the University policy.

Evaluation criteria:

Examiner	Marks	Evaluation
Supervisor	50	Dissertation proposal and presentation
HoD and Senior-most faculty of the department	50	Dissertation proposal and presentation

L	Т	Ρ	С
0	0	8	4

MSc in Molecular Medicine (Batch: 2023-2025)

MSc in Molecular Medicine (Batch: 2023-2025)

Semester IV

Course Code: MME.601

Course Title: Dissertation Part-II

L	Т	Ρ	С
0	0	4	2
		0	0

Total Hours: 600

Course Learning Outcomes:

On successful completion of the course the student will be able to:

- 1. Apply genetic and genomics technique for research
- 2. Design research studies and perform research following scientific and ethical guidelines
- 3. Interpret results of genetic and molecular experiments
- 4. Present oral and written scientific literatures

During the course student will perform:

- a. Synthesis of research hypothesis
- b. Review of literature and identify research gap
- c. Formulate methodology to achieve the objective of the research idea
- d. Present articles and research ideas to fellow students and in other platforms
- e. Perform researh and interpret the results
- f. Write research reports and may publish research findings (if significant)

Dissertation will be evaluated by the Department, as per the University policy. Evaluation criteria

Examiner	Marks	Evaluation
Supervisor	50	Continuous assessment (regularity in work, mid-term evaluation) dissertation report, presentation, final viva-voce
External expert, HoD and senior-most faculty of the department	50	Dissertation report (30), presentation (10), final viva- voce (10)

MSc in Molecular Medicine (Batch: 2023-2025)

Examination pattern and evaluation for Masters' students from 2023-24 session

Formative Evaluation: Internal assessment shall be 25 marks using any two or more of the given methods: tests, open book examination, assignments, term paper, etc. The Midsemester test shall be of 25 marks including short answer and essay type. The number of questions and distribution of marks shall be decided by the teachers.

Summative Evaluation: The End semester examination (50 marks) with 70% descriptive type and 30% objective type shall be conducted at the end of the semester. The objective type shall include one-word/sentence answers, fill-in the blanks, MCQs', and matching. The descriptive type shall include short answer and essay type questions. The number of questions and distribution of marks shall be decided by the teachers. Questions for exams and tests shall be designed to assess course learning outcomes along with focus on knowledge, understanding, application, analysis, synthesis, and evaluation.

The evaluation for IDC, VAC and entrepreneurship, innovation and skill development courses shall include MST (50 marks) and ESE (50 marks). The pattern of examination for both MST and ESE shall be the same as ESE described above for other courses.

Evaluation of dissertation proposals in the third semester shall include 50% weightage by supervisor and 50% by HoD and senior-most faculty of the department. The evaluation of dissertation in the fourth semester shall include 50% weightage for continuous evaluation by the supervisor for regularity in work, mid-term evaluation, report of dissertation, presentation, and final viva-voce; 50% weightage based on average assessment scores by an external expert, HoD and senior-most faculty of the department. Distribution of marks is based on the report of dissertation (30%), presentation (10%), and final viva-voce (10%). The-- external expert may attend final viva-voce through offline or online mode.

MSc in Molecular Medicine (Batch: 2023-2025)

Examination pattern from 2022-23 session onwards

Core, Discipline Elective, and Compulsory Foundation Courses			IDC, VAC, and Entrepreneurship, Innovation and Skill Development Courses	
Marks Evaluation			Marks	Evaluation
Internal Assessment	25	Various methods	-	-
Mid-semester test (MST)	25	Descriptive	50	Descriptive (70%) Objective (30%)
End-semester exam (ESE)	50	Descriptive (70%) Objective (30%)	50	Descriptive (70%) Objective (30%)

Syllabus MSc in Molecular Medicine (Batch: 2023-2025)

Dissertation Semester)	Proposal (Third		Dissertation (Fourth Semester)		
	Marks	Evaluation		Marks	Evaluation
Supervisor	50	Dissertation proposal and presentation	Supervisor	50	Continuous assessment (regularity in work, mid-term evaluation) dissertation report, presentation, final viva-voce
HoD and senior-most faculty of the department	50	Dissertation proposal and presentation	External expert, HoD and senior- most faculty of the department	50	Dissertation report (30), presentation (10), final viva- voce (10)

Marks for internship shall be given by the supervisor, HoD and senior-most faculty of the department.

Some Guidelines for Internal Assessment

1. The components/pattern of internal assessment/evaluation should be made clear to students during the semester.

2. The results of the internal assessment must be shown to the students.

3. The question papers and answers of internal assessment should be discussed in the class.

4. The internal assessment shall be transparent and student-friendly and free from personal bias or influence.

MSc in Molecular Medicine (Batch: 2023-2025)