Central University of Punjab

M.Sc. Microbiology

Batch- 2023-2025

Department of Microbiology

Graduate Attributes

The graduates will have the knowledge of microbial, molecular and cellular processes and their applications, which can be utilized in multidisciplinary or multi-professional contexts for conducting research in Microbiology for the betterment of society and careers in the industry, agriculture, and applied research where the biological system is increasingly employed.

The Graduates will be effective problem solvers, be able to apply critical, creative and evidence based thinking to conceive innovative responses to the future challenges. They will have a capacity to accept and give constructive feedback, act with integrity and accept responsibility for their actions.

	Semest	er – I				
Course	Course Title	Course Type		Credit Hours		rs
Code			L	Т	Ρ	Credits
MIC.506	Biochemistry	Core	3	0	0	3
MIC.507	Microbiology	Core	3	0	0	3
MIC.508	Cell Biology	Core	3	0	0	3
MIC.509	Molecular Genetics	Core	3	0	0	3
MIC.510	Microbiology Practical-I	Skill Based	0	0	8	4
	Discipline Elec	tive (opt any one	e)		1	
MIC.511	Techniques in Microbiology	Discipline elective	3	0	0	3
MIC.512	Introduction to Cell and Tissue Culture	Discipline elective	3	0	0	3
ZOL.525	Nano biology	Discipline elective	3	0	0	3
HGE.515	Public health Research and Genetic Epidemiology	Discipline elective	3	0	0	3
FST.573	Technology of Spices, Sugar and Chocolate	Discipline elective	3	0	3	3
				Total Cr	edits	19
emedial teac	ching		0	2	0	0

Course Structure

Semester – II

Course Code	Course Title	Course		Cre	dit Hours	
		Туре	L	Т	Р	Credits
MIC.521	Immunology	Core	3	0	0	3
MIC.522	Molecular Biology	Core	3	0	0	3
MIC.523	Microbial Physiology and Metabolism	Core	3	0	0	3
MIC.530	Research Methodology and Biostatistics	Compulsory foundation	3	0	0	3
MIC.524	Environmental Microbiology	Compulsory foundation	3	0	0	3
MIC.528	Microbiology Practical- II	Skill Based	0	0	6	3
	Disc	ipline Elective	opt any	7 one)		
MIC.556	Genetic Engineering and Recombinant DNA Technology	Discipline elective	3	0	0	3
MIC.525	Microbial Pathogenicity	Discipline elective	3	0	0	3
ZOL.554	Neurobiology and Degenerative Pathophysiology	Discipline elective	3	0	0	3
BCH.528	Secondary Metabolites and Xenobiotic Metabolism	Discipline elective	3	0	0	3
	Int	erdisciplinary	Course ((IDC)		
XXX	Choose from Interdisciplinary Course offered by other departments	Interdisciplin ary Course (IDC)	2	0	0	2
MIC.529	Basics of Microbiology	Interdisciplin ary Course (IDC) for other department students	2	0	0	2

MIC.539	Introduction to	Interdiscipli	2	0	0	2
	Immune system	nary Course				
		(IDC) for				
		other				
		department				
		students				
					Total Cre	23
Remedial tea	aching		0	2	0	0

Course	Course Title	Course Type		Cre	dit Ho	urs
Code			L	T	P	Credits
MIC.551	Industrial Microbiology	Core	3	0	0	3
MIC.552	Food and Dairy Microbiology	Core	3	0	0	3
MIC.553	Medical Microbiology	Core	3	0	0	3
MIC.554	Microbiology Practical –III	Skill Based	0	0	6	3
MIC.558	Entrepreneurship in Microbiology	Compulsory foundation	2	0	0	2
		tive(opt any one) /	MOO	С	,,	
MIC.559	Microbial Biotechnology	Discipline elective	3	0	0	3
BCH.557	Clinical Diagnostics	Discipline elective	3	0	0	3
BOT.555	Molecular Stress Physiology	Discipline elective	3	0	0	3
MIC.600	Dissertation Part -I	Skill Based	0	0	8	4
	Value Ad	Ided Course (VAC)				
MIC.504	Ethics for Science	VAC	2	0	0	2
XXX	Choose from Interdisciplinary Course offered by other departments	VAC	2	0	0	2
	•		1	rotal (Credit	23
Remedial t	eaching		0	2	0	0

Semester – III

Semester – IV

Course Code	Course Title	Course Type	Credit Hours			ours	
MIC.601	Dissertation Part -II	Skill Based	0	0	40	20	
	Total Credits					20	

L: Lectures; T: Tutorial; P: Practical; Cr: Credits, DE: Discipline Elective, DEC: Discipline Enrichment Course, VAC: Value Added Course

MOOCs may be taken up to 40% of the total credits (excluding dissertation credits). MOOC may be taken in lieu of any course but content of that course should match a minimum 70%. Mapping is to be done by the respective department and students may be informed accordingly.

Core, Discipline Elec	Core, Discipline Elective, Compulsory Foundation, Value				
Added and Interdisci	Added and Interdisciplinary Courses				
	Marks	Evaluation			
Internal Continuous	25	Various methods *			
Assessment (course					
wise)					
Mid-semester test	25	Subjective			
(MST)					
End-semester test	50	Subjective (70%)			
(EST)		Objective (30%)			

Evaluation Criteria for Theory Courses

* The internal assessment for different courses can be based on Surprise Tests, in-depth interview, unstructured interview, Students Teams, case based evaluation, video based evaluation, student generated questions, case analysis, simulated problem solving, media assisted evaluation, Application cards, Minute paper, open book techniques, classroom assignments, homework assignments, term paper.

	Discipline Course	Enrichment	Entrepreneurs	ship Course
Examination	Marks	Evaluation	Marks	Evaluation
Туре				
Mid-semester	50	Objective	25	Objective
test (MST)				
End-semester	50	Objective	25	Subjective
test (EST)				

The objective type examination includes one-word answers, fill-in the blank, sentence completion, true/false, MCQs', matching, analogies, rating and checklists.

The subjective type examination includes very short answers (1-2 lines), short answers (one paragraph), essay type with restricted response, and essay type with extended response.

Details of syllabus Semester – I

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.506 Course Title: Biochemistry

Total Hours: 45

Course Learning Outcomes:

Students will be able to:

CLO 1: Understand the basic chemistry that governs the living organisms: nature of bonds, importance of water, and role of buffers and concepts of bioenergetics.

CLO 2: Appraise the fundamental knowledge about various biomolecules such as proteins, carbohydrates, nucleic acids and lipids.

CLO 3: Comprehend the fundamental metabolic pathways responsible for the synthesis and degradation of biomolecules

Unit/Hours	Content	Mapping with CLOs
Unit I 11 Hours	Chemistry of Life & Bioenergetics: Ionic bonding, Ion-dipole. Covalent, H-bonds, Van der Waals interaction, Hydrophobic and hydrophilic interactions Water as a biological solvent and its role in biological processes, pH, Henderson-Hasselbalch equation, and concept of buffer, strength and range of buffer, important biological buffers. Thermodynamics, entropy, enthalpy, Gibbs free energy equation and feasibility of reaction, free energy and equilibrium constant, determination of free energy of biological oxidation reduction reactions under standard and non- standard conditions, coupled reactions. ATP and other different groups of high- energy compounds. Exercise: Numerical exercises for understanding the concept of pKa and buffer range, calculations of free energy and equilibrium constants, students applying and explaining thermodynamic principle in metabolism.	CLO 1
Unit II 12 Hours	Macromolecules I- Proteins and Nucleic Acids: Proteins: Structural features of amino acids, classification of amino acids, peptide linkage: partial double bond nature, determination of primary structure of polypeptide (N-terminal, C-terminal determination, method of sequencing of peptides), structural classification of proteins, primary, secondary, tertiary, quaternary structures of proteins. Ramchandran plot. Nature of Nucleic Acids. Structure of purines, pyrimidines, nucleosides and nucleotides. Physicochemical properties of nucleic acids - Denaturation of nucleic acids. Hyperchromic effect and Tm. Exercise: Problem based learning for Determination, Interpretation of Tm curve by students in the class.	CLO 2

Unit III 11 Hours	 Macromolecules II- Carbohydrates, Lipids: Carbohydrates: Monosaccharides, disaccharides, oligosaccharides and polysaccharides, concepts of epimer, isomer, starch, glycogen, chitin, cellulose. Lipids: Saturated and unsaturated fatty acids, triacylglycerols, phospholipids, sphingolipids, sterols, Biological membranes. Exercise: Practicing nomenclature of lipid molecules according to convention, arranging them according to melting points, Recognizing aldoses, ketosis and epimers. 	CLO 2
Unit IV 11 Hours	Metabolism: Fatty acid oxidation. Biosynthesis of fatty acids, triacylglycerols and phospholipids. Catabolism of Glycogen. Amino acid catabolism- Urea Cycle Deamination and transamination reactions. <i>De novo</i> biosynthesis of purines and pyrimidines, Ribonucleotide reductase and its role in nucleic acid metabolism. Exercise: Numerical approaches in calculating ATP generation from the oxidation of odd and even chain fatty acids, Problem based learning approach for understanding metabolic pathways.	CLO 3

- 1. Berg, J.M., Tymoczko, J.L., Gatto, Jr., G.J., and Stryer, L. (2015). *Biochemistry*, 8th Edition.
- 2. Geoffrey L. Zubay (2017). Principles of Biochemistry by Brown Co, USA.
- 3. MoatA.G., Foster J. W SpectorM. P. (2002) *Microbial Physiology* John Wiley & Sons.
- 4. Nelson D. L. and Cox M. M. (2017) Lehninger *Principles of Biochemistry* by W. H. Freeman.
- 5. White, D, Drummond J. Fuqua C (2011) *The Physiology and Biochemistry of Prokaryotes* Oxford University Press.
- 6. Cohen G. N. (2014) Microbial Biochemistry Springer.
- 7. Ferrier D. R. (2013) *Lippincott's Illustrated Reviews: Biochemistry* Lippincott Williams & Wilkins.
- 8. Irwin H. Segel (2004) Biochemical Calculations Wiley.
- 9. Palmer, T. Horwood E (1991) Understanding Enzymes Wiley.
- 10. Nelson D.L, Cox M.M (2017) Lehninger principles of biochemistry Freeman & company

Weblinks:

- https://epgp.inflibnet.ac.in/

- <u>https://swayam.gov.in/</u>

-<u>https://lms.cup.edu.in/course/index.php?categoryid=65</u>

Modes of transaction

-Lecture -Problem solving

-Panel discussion

-Tutorial

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.507 Course Title: Microbiology

Total Hours: 45

Course Learning Outcomes (CLO):

Students will be able to:

CLO 1. Describe the microbial systematics and ultrastructure of the prokaryotes as well as its significance

CLO 2. Recall and define the basics of microbial growth and their application in day-to-day life.

CLO 3. Classify and explain the importance of fungi with emphasis on antimicrobial resistance.

CLO 4. Organize and explain the importance of algae and protozoans

Unit/Hou rs	Content	Mapping with CLOs
Unit I 12 Hours	Microbial Taxonomy: Major characteristics used in taxonomy – morphological, physiological and metabolic, genetic and nolecular taxonomy. Classification of bacteria and Archaea according to the Bergey's Manual of Systematic Bacteriology and their economic significance. Scope and history of Microbiology : Cell structure, different components, function and their significance in microbes. Detailed account of biogenesis and unction of microbial cell structure appendages: lagella- structure, assembly and mechanism of novement; pili and fimbriae- types, structure and their role. External cell surface structures: capsule, glycocalyx, slime layer and S-layer. Overview of gram negative and gram-positive bacterial cell wall, outer membrane ipopolysaccharide (LPS). Cell wall synthesis and its inhibitors including different antibiotics. Exercise: Preconception/Misconception Check, One Sentence Summary, Imagine, Group liscussion about emerging pathogens (SARS- CoV-2, Ebola, Marburg etc)	CLO 1
Unit II 11Hours	Growth and cell division: Measurement of growth, growth physiology, cell division, growth vields, growth kinetics, steady state growth and continuous growth. Microbial stress response to different environmental conditions. Archaeal diversity, cell structure and model organisms: Phylogenetic diversity and key leatures of different phyla. General characteristics of archaeal cell structure and comparison with eubacteria. Detailed account of model archaeal organisms: Methanococcus, Halobacterium, Pyrococcus and Sulfolobus. Exercise: Pyramiding / Snowball Groups, Memory Matrix, Student poll, Class quiz, self- directed learning.	CLO 1 CLO 2

Unit III 12 Hours	Mechanism of Antibiotic and Resistance: Mode of action of antibiotics and hemotherapeutic drugs: inhibitors of cell wall ynthesis, Protein Synthesis, Nucleic Acid Synthesis and Metabolism, Antibiotic sensitivity ussays, Antibiograms. Antibiotic resistance in pacteria-various molecular factors that contribute to the development of resistance, Monoclonal antibodies as therapeutic agents to esistance bacteria. General features and classification of fungi , ntroduction of fungi, Reproduction in fungi, life ycle patterns, Endophytic fungi and its mportance, Economic importance of fungi and	CLO 3
	mportance, Economic importance of fungi and reast. Pathogenic Fungi: Morphological haracteristics, pathogenesis and laboratory liagnosis of following pathogenic fungi: superficial mycoses, systemic mycoses, Candida ulbicans; Candida auris, and Cryptococcus neoformans Exercise: Asking questions, Quizzes, Presentation, unstructured interview, Students Teams.	
Unit IV 10 Hours	Igae: Classification; reproduction and life ycles; algal toxins, algal bloom, algae as a ource of antibiotics. Protozoal Pathogens: General description, life cycle, pathogenesis, liagnosis and treatment of and diseases caused by Protozoa- <i>Plasmodium spp, Trypanosoma</i> <i>spp, Leishmania spp, Entamoeba histolytica.</i> Exercise: Case studies, Debate, Asking juestions, Objective structured practical examinations (OSPE)	CLO 4

- 1. Pelczar, M. J., Chan, E.C.S. and Krieg, N.R. (2020). *Microbiology: Concepts and Applications*. McGraw-Hill Inc. USA.
- 2. Joanne Willey, Kathleen Sandman and Dorothy Wood (2019) *Prescott's Microbiology*. 11th Edition, McGraw-Hill Science, USA.
- 3. Tortora, G.J., Funke, B.R. and Case, C.L. (2016). *Microbiology: An Introduction.* Benjamin Cummings, USA.

- 4. Bauman, R.W. (2011). *Microbiology with Diseases by Body System*. Benjamin Cummings, USA.
- 5. Capuccino, J.G. and Sherman, N. (2004). *Microbiology-A Laboratory Manual*. Benjamin Cummings, USA.
- 6. Pommerville, J.C. (2010). *Alcamo's Fundamentals of Microbiology*. Jones & Bartlett Publishers, USA.
- 7. Experiments In Microbiology, Plant Pathology and Biotechnology. 4th Edition (2010). New Age Intl. Publishers Ltd. New Delhi.
- 8. Strelkauskas, A., Strelkauskas, J. and Moszyk-Strelkauskas, D. (2009). *Microbiology: A Clinical Approach.* Garland Science, New York, USA.

Web Sources:

<u>https://lms.cup.edu.in/course/index.php?categoryid=65</u> -https://epgp.inflibnet.ac.in/ -https://www.biointeractive.org/classroom-resources/citric-acid-cycle

Modes of transaction

- -Lecture
- Problem solving
- -Panel discussion
- Group discussion

L	Т	Р	Credits
3	0	0	3

Course Code: MIC. 508 Course Title: Cell Biology

Total Hours: 45

Course Learning Outcomes:

Students will be able to:

CLO 1: Demonstrate the structure and basic components of prokaryotic and eukaryotic cells.

CLO 2: Describe the cell organelles and their related functions.

CLO 3: Apply the basic core of scientific and quantitative knowledge to enhance understanding of cell structure and function at the molecular level.

CLO 4: Explain the biological processes of cell division and signal transduction pathway.

Unit/Hour s	Content	Mapping with CLOs
Unit I 10 Hours	 Introduction to the Cell: Evolution of the cell. Prokaryotes and eukaryotes, Prokaryotic and eukaryotic genomes and single cell to multicellular organisms. Membrane Structure and Function: Models of membrane structure, Membrane proteins, Membrane carbohydrates, Membrane transport of small molecules, Membrane transport of macromolecules and particles. Exercise: Group test reading, Debate, Brainstorming, Quiz based assessment, group discussion. 	CLO 1
Unit II 11 Hours	Structural Organization and Function of Intracellular Organelles: Structure and function of nucleus, Chromosome Structure, Chromatin and its regulation, nucleosome and its assembly, Ribosomes, lysosomes, peroxisomes, Golgi apparatus, endoplasmic reticulum, mitochondria and chloroplast. Oxidation of glucose and fatty acids, Electrons transport oxidative phosphorylation, and photosynthesis. Protein Secretion and Sorting: Organelle biogenesis and protein secretion, synthesis and targeting. Intracellular traffic, vesicular traffic in the secretory pathway, protein sorting in the Golgi bodies, traffic in the endocytic pathway, exocytosis. Exercise: Problem solving, Debate, Memory Matrix, Practical based learning and assessment, open book tests.	

Unit III 12 Hours	 The Cytoskeleton: The nature of cytoskeleton, Intermediate filaments, Microtubules, Actin filaments, Cilia and centrioles, Organization of the cytoskeleton. Cell communication and cell signaling: Cell adhesions, Cell junctions and the extracellular matrix, Cell-cell adhesion and communication, Cell matrix adhesion, Collagen the fibrous protein of the matrix, Non-collagen component of the extracellular matrix. Exercise: Problem based learning, Muddiest Point, Crossword Puzzle, Students teaching, paper presentation on ECM and its components. 	CLO 3
Unit IV 12 Hours	Cell Growth and Division: Overview of the cell cycle and its control, the molecular mechanisms for regulating mitotic and meiotic events, Cell cycle control, Checkpoints in cell cycle regulation and dysregulation. Cell to cell signaling, Overview of the extracellular signaling, Identification of cell surface receptors, G-protein coupled receptors and their effectors, Second messengers, Enzyme-linked cell surface receptors, Interaction and regulation of signaling pathways. Exercise: Practical, team teaching, Quiz, Brainstorming, Presentations.	

- 1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. (2010). *Molecular Biology of the Cell.* Garland publishers, Oxford.
- 2. Alberts B, Hopkin K, Johnson AD *et al.* (2019) *Essential Cell Biology*, 5th Ed., W W Norton & Company.
- 3. George Plopper; David Sharp; Eric Sikorski (2014) Lewin's Cell Third edition Jones and Bartlett learning
- 4. Gupta, P.K. (2008). *Cytology, Genetics and Evolution*. Rastogi publications, Meerut, India.
- 5. Gerald Karp, Janet Iwasa, Wallace Marshall (2015). *Karp's Cell and Molecular Biology: Concepts and Experiments*. 8th edition John Wiley &Sons. Inc. New Delhi, India.
- 6. De Robertis, E.D.P. and De Robertis, E.M.F. (2017). *Cell and Molecular Biology*. VIII Edition. Lippincott Williams and Wilkins, Philadelphia.

- 7. Lodish, H, Birk, A, et al. (2016) Molecular Cell Biology. 8th ed. WH Freeman.
- 8. Cooper Geoffrey (2018) The Cell: A Molecular Approach Eighth Edition Sinauer Associates

Web Sources:

https://lms.cup.edu.in/course/index.php?categoryid=65

https://epgp.inflibnet.ac.in/

Modes of transaction

-Lecture

- Problem solving
- Group discussion
- Self-directed learning

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.509 Course Title: Molecular Genetics

Total Hours: 45

Course Learning Outcomes:

Students will be able to:

CLO 1: Illustrate the basic principles of inheritance at the molecular, cellular and organism levels.

CLO 2: Elaborate the concepts of hereditary information and how they work in living organisms.

CLO 3: Demonstrate the practical skills of molecular genetic analysis of genetic diseases

CLO 4: Utilize the molecular microbial genetics and to apply them to real life situations.

Unit/Hour s	Content	Mapping with CLOs
Unit I 10 Hours	 Mendelian Principles: Dominance, segregation, independent assortment, Allele, multiple alleles, pseudoallele, complementation tests Extensions of Mendelian Principles: Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited and sex influenced characters. Extra-Chromosomal Inheritance: Chloroplast and Mitochondrial inheritance; Cytoplasmic inheritance. Exercise: Making self-pedigree tree and family history, numericals based on Mendelian laws. 	CLO 1
Unit II 11 Hours	Gene Mapping Methods: Molecular markers: RAPD, RFLP, SSR, SNP, ISSR, and SCAR;Linkage maps, tetrad analysis in <i>Neurospora</i> , mapping with molecular markers, development of mapping population in plants. Human Genetics: Pedigree analysis, LOD score for linkage testing, karyotypes, genetic disorders. Quantitative Genetics: Polygenic inheritance, heritability and its measurements, QTL mapping. Exercise: Experiments, Panel discussion on inherited diseases.	

Unit III 12 Hours	Mutation: Types, causes and detection, mutant types – lethal, conditional, biochemical, loss of function, gain of function, germinal vs somatic mutants, insertional mutagenesis, applications in reverse and forward Genetics; Structural and numerical alterations of chromosomes: Deletion, duplication, inversion, translocation, ploidy and their genetic implications; Hardy Weinberg equilibrium. Molecular basis of spontaneous and induced mutations. Recombination: Site-specific, homologous, DNA transposition, retrotransposition and non-homologous end joining (NHEJ). Exercise: Problem based learning, numericals for Hardy Weinberg equilibrium.	CLO 3
Unit IV 12 Hours	 Microbial Genetics: Microbes as tools for genetic studies. Organization of genetic material in bacteria; and viruses, Gene transfer mechanisms, F plasmid; Lambda phage: structure, genetic makeup and life cycle (lytic and lysogeny); Natural transformation and competence; Molecular basis of natural transformation – DNA uptake competence systems in gram positive and gram negative bacteria. Bacterial Conjugation- Properties of the F plasmid, F+ x F - mating, F' x F- conjugation. Transduction, virus life cycle and replication. Exercise: Research paper presentation, Problem based learning sessions, Class quiz. 	CLO 4

- 1. Snusted, D.P., Simmons, M. J. (2015). *Principles of Genetics*. 7th Edition, John Wiley & Sons, New York.
- 2. Raven P, Johnson GB, Mason KA, Losos JB, Singer SS (2014). *Biology*, 10th Edition, McGraw-Hill, USA.
- 3. Griffiths AJF, Wessler SR, Carroll SB, Doebley J (2015). An Introduction to Genetic Analysis. 11th Edition W.H. Freeman publication, USA.
- 4. Larry Snyder, Larry Snyder, Joseph E. Peters, Tina M. Henkin, Wendy Champness (2013) *Molecular Genetics of Bacteria*, 4th edition; ASM Press.

- Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2017). *Molecular Biology of the Gene*. 7th Edition, Benjamin Cummings, USA.
- 6. <u>Pierce, Benjamin</u> (2021). Genetics Essentials: Concepts and connections, 5th edition, Macmillan international

Web Sources:

https://lms.cup.edu.in/course/index.php?categoryid=65

https://epgp.inflibnet.ac.in/

https://www.biointeractive.org/classroom-resources/inheritanceand-mutations-singlegene-disorder

https://www.biointeractive.org/classroom-resources/analyzingpedigrees

Modes of transaction

-Lecture -Problem Solving -Self-Learning -Inquiry training -Co-operative learning

Tools used

Videos, Google Drive

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.511 Course Title: Techniques in Microbiology

Total Hours: 45

Course Learning outcomes:

CLO 1: Develop a conceptual understanding about various biochemical techniques.

CLO 2: Develop a conceptual understanding about various Immunological techniques.

CLO 3: Develop a conceptual understanding about various techniques required for the study of cell biology.

CLO 4: Develop a conceptual understanding about various molecular biology related techniques.

Unit/Hour s	Content	Mapping with CLOs
Unit I 11 Hours	Spectroscopy: Basic concepts, principles and biological applications of spectroscopy: absorption spectroscopy, fluorescence spectroscopy, phosphorescence, Infrared and Raman spectroscopy, Optical Rotatory Dispersion (ORD), Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) & Electron Spin Resonance (ESR).X-Ray Diffraction. Chromatographic techniques: Basics of Chromatography, Paper, Thin layer and Column chromatography; Protein purification; Liquid chromatography; Gas chromatography, Affinity Chromatography, Gel Filtration, Ion Exchange Chromatography, HPLC. Exercise: Visit and demonstration of NMR, GC-MS and HPLC, Classroom Opinion Polls	CLO 1
Unit II 11 Hours	Immunological TechniquesMethods for immunoglobulin determination- quantitative and qualitative antigen and antibody reactions, agglutination- precipitation, immunocytochemistry, radioimmunoassay (RIA), Enzyme Linked Immunosorbent Assay (ELISA), immunofluorescence, Immuno- Electrophoresis, immunoblotting and Flow cytometry.Exercise: Learning by doing small group based exercises.	CLO 2
Unit III 11 Hours	Techniques in Cell Biology: Types of Microscopy (phase contrast, fluorescent, electron microscopy (SEM/TEM), Scanning- probe, Atomic force and Confocal microscopy. Centrifugation: Principle and applications and types (Differential, Density Gradient, Iso-density centrifugation). Electrophoresis: Principle and types, Colony counter, Isoelectric focussing, colorimetry, Turbidimetry. Exercise: Visit and demonstration of SEM, Confocal, practicals for electrophoresis and centrifugation, Paper discussion.	CLO 3

Unit IV 12 Hours	TechniquesinMolecularBiology:Polymerase chain reaction (PCR):Principle,types and applications, PCR based markers:RAPDs, SSRs, SNPs, ISSRs, and SCARs etc.Blotting techniques:Southern, Northern,Western, Dot blotting and hybridization, DNAfingerprinting.MutationAnalysesTechniques:Restriction mapping, SSCP DNAsequencing technology.Gene expressionanalysis.Exercise:Practicals and Student-generatedtest questions, Problem solving.	CLO 4

- 1. Nelson D. L. and Cox M. M. (2017) Lehninger *Principles of Biochemistry* by W. H. Freeman.
- 2. Cohen G. N. (2014) Microbial Biochemistry Springer.
- 3. Ferrier D. R. (2013) *Lippincott's Illustrated Reviews: Biochemistry* Lippincott Williams & Wilkins.
- 4. Celis, J.E. (2006). *Cell biology: A laboratory handbook*, Vol 1, 2, 3. Academic Press, UK.
- 5. Karp, G. (2010). *Cell and Molecular Biology: Concepts and Experiments*. John Wiley & Sons. Inc. New Delhi, India.
 - Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2014). *Molecular Biology of the Gene*. 7th Edition, Benjamin Cummings, USA.
 - 7. Tizard (2008). Immunology: An Introduction. Cengage Learning, Thompson, USA.
 - 8. Kindt, T. J., Osborne, B.A. and Goldsby, R.A. (2007). *Kuby Immunology* 7th Edition. W.H. Freeman, USA.
 - 9. Abbas. (2008). *Cellular and Molecular immunology*. CBS Publishers & Distributors, India.
 - 10. Stevens C.D., (2021) *Clinical immunology* & *serology: A laboratory perspective*. F.A. Davis company

Web Sources:

https://www.biointeractive.org/classroom-resources https://www.vlab.co.in

Modes of transaction

- -Lecture
- -Problem solving
- -Panel discussion
- -Tutorials
- -Google Classroom

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.512 Course Title: Introduction to Cell and Tissue Culture

Total Hours: 45

Course Learning Outcomes:

The students will be able to:

CLO 1: Outline the background of animal tissue culture.

CLO 2: Maintain cultures of animal cells and established cell lines with good viability and minimal contamination

CLO 3: Execute this knowledge in other fields and planning projects in the fields of molecular biology and biotechnology.

CLO 4: Design the cell culture based experiments in a research setting as well as Industrial setting with a thorough clarity in the basic principles.

Unit/Hours	Content	Mapping with CLOs
Unit I 11 Hours	Introduction to Animal Cell culture: Basics terms and lefinitions, historical background, importance of animal cell culture technology, laboratory facilities- lesign, equipments and safety parameters, waste disposal in a cell culture set-up. Aseptic techniques for animal cell cultivation. Exercise: Lab tour for understanding ab setup, BSLs, aseptic methods, waste disposal.	CLO 1
Unit II 12 Hours	Cell Culture Technology: Basic requirement for growing animal cells Cell culture reagents, media preparation and their types. Maintenance of cell culture: Culturing, sub-culturing, passaging, cell metabolism during culture, Cell culture types: primary and continuous culture, <i>in vitro</i> ransformation of animal cells, anchorage-dependence, monolayer and suspension culture, normal cells and transformed cells. Scaling up- echniques for cells in suspension and in monolayer. Cell line preservation and authentication. Contamination check and prevention: bacterial, yeast, fungal, mycoplasma, viral testing. Exercise: Students Teams, hands-on raining in tissue culture, Student- generated test questions.	CLO 2

Unit III 12 Hours	Study of Biological system using Cell Culture Techniques: Functional assays based on cell culture: Cell morphology, Quantitation, Growth pattern, DNA content and cell cycle, Cytotoxicity assays, Study of Cell Death: senescence, apoptosis and necrosis, Cell proliferation, Cell viability measurements, Karyotype analysis, FISH. Immunolabeling of cells to study molecular expression pattern- Microscopy, Flow-cytometry, Cytospin, Immunohistochemistry, Fransfection, Transient, stable cell ine generation and Gene Silencing. Exercise: Data interpretation and discussions from published papers on various techniques.	CLO 3
Unit IV 12 Hours	Cell and Tissue culture- Trends and Breakthroughs : Hybridoma rechnology for monoclonal antibody production, production of genetically-engineered cells and their applications, use of cell cultures in the production of biologicals, Insect Cell Culture and its application., Types of stem cells, current stem cell therapies, stem cells in heart, brain and spinal cord regeneration and regenerative medicine Regenerative Medicine: Tissue engineering, Three- limensional culture, multicellular umour spheroids (MCTS)-mono and co-cultures, re-aggregate organ cultures, drug testing <i>in-vitro</i> . Nanotechnology. Exercise: Presentations on recent rends/breakthroughs, Case study, Team teaching.	

- 1. Michael Butler (2005), Animal Cell Culture and Technology. BIOS Scientific Publishers
- 2. John R.W. Masters (2000), Animal Cell Culture-A Practical Approach. Oxford University Press

- 3. Freshney Ian (2017) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. 7th Edition, Wiley-Blackwell.
- 4. Trent, R. J. (2012). Molecular Medicine, Genomics to Personalized Healthcare. Academic Press

Web Sources:

https://www.vlab.co.in https://www.biointeractive.org/classroom-resources

Modes of transaction

- -Lecture
- -Self-directed Learning
- -Group discussion
- Team teaching
- Experimentation

L	Т	Р	Credits
0	0	8	4

Course Code: MIC.510 Course Title: Microbiology Practical -I

Total Hours: 120

Learning Outcomes: The students will be able to:

CLO1. Design, create and execute the experiments pertaining to biochemistry.

CLO2. Perform and execute the experiments pertaining to microbiology

CLO.3 Design and execute the experiments pertaining to cell biology

CLO4. Plan, and execute the experiments pertaining to genetics

Unit/Hours	Content	Mapping with CLOs
Part A. Biochemistry 30 Hours	 Introduction to Good Laboratory Practices Preparation of solutions, buffers, pH setting etc. Quantitative estimation of proteins, sugars, total lipids and amino acids. Isolation of protein from biological sample Enzyme activity assays: invertase, amylase, alkaline phosphatase Quantitative estimation of phenolic compounds. 	CLO 1

Part B. Microbiology 30 Hours1. Use of Microscope and working in a biosafety cabinet; Preparation of growth media: Liquid and Solid mediaCLO 22. Staining of bacterial cultures: Simple staining, Acid-Fast stain, fungal staining, Acid-Fast stain, fungal staining.CLO 13. Effect of UV, gamma radiations, pH, disinfectants, chemicals and heavy metal ions on micro-organisms.A4. Preparation of microbiological media. Autorophic media, enriched media, basic media, enriched media, enrichment media, differential media, mifferent sources (soil, air, water) and determination of CFU.6. Testing void fifterent sources (soil, air, water) and determination of CFU.7. Use of selective and/or differential media for isolation and identification of specific bacterial cultures.8. Preparation of Media: Nutrient broth, Nutrient agar, plates, slants, soft agar; Pure culture technique: Streak plate, spread plate and pour plate methods.9. Culturing methods of microbes – slant and stab cultures, tube culture, flask cultures, shake flask cultures.10. Preparation of different types of culture media/observation.10. Preparation of different types of cultures, shake flask cultures, agar, Lowensten-Jension medium, Wilson Blair Bismuth sulphite medium, Biochemical media.11. Tests for disinfectants (Phenol
coefficient/RWC). 12. Biochemical tests to characterize bacterial cultures: Catalase test,

Part C. Cell Biology 30 Hours	y meter, weighing balance and centrifuge.	
Part D. Genetics 30 Hours	 Learning the genetic basis of blood group typing. Identification of inactivated X chromosome as Barr body and drumstick To demonstrate and understand the principle of Hardy-Weinberg equilibrium. Calculation of genotypic and allelic frequencies for a specific trait in a random sample. Techniques for screening and isolation of bacterial cultures with specific phenotypic/genotypic characteristics. Differentiating genetic variants (species/strains) using RFLP. Studying Drosophila melanogaster as a Model organism: Identification of normal and mutant flies (Drosophila melanogaster), Demonstration of Drosophila polytene chromosomes. 	CLO 3 CLO 4

Modes of transaction

-Lecture cum demonstration

-Problem Solving -Self-Learning -Inquiry training

-Team teaching

- Experimentation

Evaluation Criteria for Practical Courses: Students are evaluated for a total of 100 marks with following distribution:

Continuous assessment- 50 Marks:

Maintaining the lab records/notebooks: 15 Marks

Surprise test/quiz/objective type test during the semester: 15 Marks Good laboratory Practices, Designing and execution of experiments: 10

Marks Attendance during day to day practical: 10 Marks

Final Practical Examination- 50 Marks:

Minor Experiment (10 Marks), Major Experiment (to be performed, 20 Marks) and viva-voce (20 Marks)

Suggested Reading:

1. Michael J. Leboffe (2011) A Photographic Atlas for the Microbiology laboratory.

2. Prakash S. Bisen (2014) Laboratory Protocols in Applied Life Sciences. Taylor & Francis Group, LLC

3. John Harley (2016) Laboratory Exercises in Microbiology, 10th Edition by John Harley

4. Benson's Microbiological Applications Lab Manual, 2016.

5. James G. Cappuccino & Natalie Sherman (2014) *Microbiology: A Laboratory Manual*, 10th Edition.

6. Aneja KR (2014) Laboratory Manual of Microbiology and Biotechnology.

7. Alberts, B. Bray, D. Lews, J., Raff, M., Roberts, K. and Watson, J.D. (2010). *Molecular Biology of the Cell.* Garland publishers, Oxford.

8. Celis, J.E. (2006). Cell biology: A laboratory handbook, Academic Press, UK.

9. Karp, G. (2010). *Cell and Molecular Biology: Concepts and Experiments*. John Wiley & Sons. Inc., New Delhi, India.

10. Sawhney, S.K. and Randhir, S. (2005). *Introductory Practical Biochemistry*. Alpha Science International Ltd. New Delhi, India.

Web Sources:

- https://epgp.inflibnet.ac.in/
- https://www.vlab.co.in
- https://www.biointeractive.org/classroom-resources
- YouTube links

Semester II

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.521 Course Title: Immunology

Total Hours: 45

Course Learning Outcomes:

After the completion of the course students will be able to:

CLO 1: Describe the fundamental concepts and components of human immune systems using correct scientific terminologies.

CLO 2: Understand the functioning of the immune system in the context of diseases.

CLO 3: Apply the knowledge in health and disease from an immunological perspective.

Unit/Hours	Content	Mapping with CLOs
Unit I 11 Hours	 Immune System: Overview of immune system; origin of Immune cells, their types and organs of immune systems; innate adaptive immunity and their components, PAMPs and PRRs. Recognition of self and non-self. Nature of antigen. Components of acquired immunity. Humoral immunity and cell mediated immunity. Immunoglobulins, basic structure, classes and subclasses, structural and functional relationships. Molecular Mechanisms of Antibody Diversity and Cellular Immunity: Organization of genes coding for constant and variable regions of heavy chains and light chains, antibody diversity & class switching. Complement System: Complement components, their structure and functions and mechanisms of complement activation by classical, alternative and lectin pathway. Exercise: Concept mapping, spontaneous quizzes, role playing 	CLO 1
Unit II 10 Hours	Functions of Acquired Immunity: Cells of acquired immunity,Th1 and Th2 responses, cytokines, chemokines, interferons, interleukins, antigen recognition-membrane receptors for antigens. Structure and functions of Major Histocompatibility Complex (MHC) and Human Leukocyte Antigen (HLA) system, polymorphism, distribution variation and function. Association of MHC with disease and superantigen, recognition of antigens by T and B-cells, antigen processing, role of MHC molecules in antigen presentation and co-stimulatory signals. Exercise: Problem based learning, quescussion	CLO 1

Unit III 12 Hours	Immunity and Human Diseases: Types of hypersensitivity, features and mechanisms of immediate and delayed hypersensitivity reactions. Immunity to bacterial, fungal, viral and protozoan diseases, immunity to tumors, and allergies. Immunology of Autoimmunity, Congenital diseases and Immunodeficiencies. Recent advances for diseases like AIDS, hepatitis, cancer, SARS-CoV-2 and malaria. Vaccine technology- Role and properties of adjuvants, recombinant DNA and protein based vaccines, plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate vaccines. Exercise: Case studies, research paper discussion, quizzes	CLO 2
Unit IV 12 Hours		

- 1. Kindt, T. J., Osborne, B.A. and Goldsby, R.A. (2018). *Kuby Immunology* 8th Edition. W.H. Freeman, USA.
- 2. Abbas. (2017). *Cellular and Molecular immunology*. 9th Edition, CBS Publishers & Distributors, India.
- 3. Charles, A. and Janeway, J.R. (1994). *Immunobiology: The immune system in health and disease*. Blackwell Publishing, USA.
- 4. Delves, P.J., Roitt, I.M. and Seamus, J.M. (2006). *Roitt's Essential Immunology (Series–Essentials).* Blackwell Publishers, USA.
- 5. Elgert K.D. (2009). Immunology: Understanding the immune system.
- 6. Paul, W.E. (1993). Fundamental Immunology. Raven Press, SD, USA.
- 7. Sawhney, S.K. and Randhir, S. (2005). *Introductory practical biochemistry*. Alpha Science International Ltd. New Delhi, India.
- 8. Tizard (2008). Immunology: An Introduction. Cengage Learning, Thompson, USA.

Web Sources:

https://swayam.gov.in/ https://www.biointeractive.org/

Modes of transaction

-Lecture -Inquiry training -Panel discussion -Problem solving -Self-learning

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.522 Course Title: Molecular Biology

Total Hours: 45

Course Learning Outcomes.

The students will be able to:

CLO1 Describe the molecular structure of DNA, RNA and their replication, damage and repair.

CLO2 Explain the basic and advanced concepts related to molecular processes in a cell and how they are related to biochemical processes in microbes and higher organisms.

CLO 3 emphasizes the concepts of central dogma of molecular biology spanning from DNA Replication, transcription and Protein Synthesis

CLO 4 Propose the applications of molecular biology to societal needs with reference to medicine, industry and agriculture.

Unit/Hours	Content	Mapping with CLOs
Unit I 12 Hours	Structure and Conformation of Nucleic Acids: Structure of DNA, Denaturation and Renaturation, Conformation of nucleic acids (A, B, Z), Organelle DNA. Genome organization: Repetitive DNA, interrupted genes, gene shuffling. DNA replication: Arrangement of replicons in a genome, various modes of replication, continuous, discontinuous synthesis, various replication enzymes, replication fork and priming, leading and lagging strand, elongation, termination, specific features of replication in prokaryotes and eukaryotes, action of topoisomerases, telomere maintenance and chromatin assembly, single stranded DNA replication, relationship between DNA replication and cell cycle, and DNA copy number maintenance. Exercise: Student-generated test questions, Experimental evidences	CLO3
Unit II 12 Hours	Recombination and Repair of DNA: DNA repair and recombination, DNA mismatch repair, Double Strand Break repair, recombination as a molecular biology tool, CRISPR-Cas systems for editing, regulating and targeting genomes. Transcription and mRNA Processing: Types of RNA, Prokaryotic &, eukaryotic transcription, general and specific transcription factors, Regulatory elements and mechanisms of ranscription regulation, Transcriptional and posttranscriptional gene silencing: Initiation, Elongation & Termination of transcription, Capping, Polyadenylation, Splicing, editing, mRNA stability, RNA interference and microarray analysis, RNA editing. Exercise: Application Article, Problem based earning.	

Unit III 10 Hours	Franslation: Genetic code, prokaryotic & eukaryotic translation, the translation machinery, mechanisms of chain initiation, elongation and termination, regulation of translation, co-and post- translational modifications. Exercise: Asking Questions, Crossword Puzzle, Case Studies.	
Unit IV 11 Hours	Gene Regulation: Prokaryotic – lac, trp, gal and ara operons, lambda gene regulation during ysogeny and lytic cycle; Eukaryotic – yeast, higher eukaryotes, hormonal regulation of genes, epigenetic regulation. Exercise: Team teaching, Group Text Reading, Problem Solving.	CLO 4

- Watson, J.D., Baker,T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2014). *Molecular Biology of the Gene*. 7th Edition, Benjamin Cummings, USA
- 2. Green, M.R., Sambrook, J. (2012). *Molecular cloning: A laboratory manual*. Cold Spring Harbor Laboratory Press, New York.
- 3. Lodish, H, Birk, A, et al. (2016) *Molecular Cell Biology*. 8th ed. WH Freeman.
- Nancy Craig, Rachel Green, Carol Greider, Gisela Storz, and Cynthia Wolberger (2019) Molecular Biology. Principles of Genome Function. Third Edition. Oxford University Press
- 5. Michael M. Cox; Jennifer Doudna ;Michael O'Donnell (2015) Molecular Biology Principles and Practice Second Edition, WH Freeman and company
- 6. David P. Clark, Nanette J. Pazdernik and Michelle R. McGehee (2019) Molecular Biology: Principles and Practice Elsevier Inc. USA
- 7. Robert F. Weaver (2011)Molecular Biology McGraw-Hill Education; 5th edition

Web Sources:

-<u>https://www.biointeractive.org/classroom-resources/bacterial-identification-virtual-lab</u>

- <u>https://www.youtube.com/watch?v=VgAuZ6dBOfs</u>

Modes of transaction

-Lecture -Problem Solving -Self-Directed Learning -Inquiry training -Co-operative learning -Team teaching

Tools used

Study Videos, Google Classroom/Drive

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.523 Course Title: Microbial Physiology and Metabolism

Total Hours: 45

Course Learning Outcomes:

CLO1 - able to explain various anabolic and catabolic pathways, transport systems and the mechanisms of energy conservation in microbial metabolism

CLO2 - Illustrate the metabolic diversity exhibited by microorganisms, their thermodynamics and regulatory networks that support their survival and growth.

CLO3 - Grasp basic mechanisms of energy-yielding and consuming processes CLO4 - Compile the knowledge about microbial transport system, and mechanism of bacterial sporulation in a broad spectrum of micro-organism.

Unit/Hours	Content	Mapping with Course Learning Outcome
Unit I 10 Hours	Bacterial Photosynthesis: Photosynthetic microorganisms, photosynthetic pigments, and generation of reducing power by cyclic and non-cyclic photophosphorylation, electron transport chain in photosynthetic pacteria. Carbon dioxide fixation pathways. Exercise: Brainstorming, Discussions and Group Learning, Debates.	
Unit II 11 Hours	Bacterial Respiration: Bacterial aerobic respiration, components of electron ransport chain, free energy changes and electron transport, oxidative phosphorylation and theories of ATP formation, inhibition of electron transport chain. Electron transport chain in neterotrophic and chemolithotrophic pacteria. Bacterial Anaerobic Respiration: introduction. Nitrate, carbonate and sulfate as electron acceptors. Electron transport chains in some anaerobic bacteria. Catalase, superoxide dismutase, mechanism of oxygen toxicity. Exercise: Presentations, Debates, Quiz, Critical Thinking	
Unit III 12 Hours	Bacterial Permeation: Structure and organization of membrane (Glyco-conjugants and proteins in membrane systems), fluid mosaic model of membrane. Methods to study diffusion of solutes in bacteria, passive diffusion, facilitated diffusion, different mechanisms of active diffusion. Proton Motive Force, PTS, role of permeases in ransport, different permeases in <i>E. coli</i> . Fransport of amino acids and inorganic ions n microorganisms and their mechanisms. Exercise: Student-generated test questions, Classroom Opinion Polls.	

Unit IV 12 HoursBacterial Sporulation and stages of sporulating pacteria, molecular architecture of spores, nduction and stages of sporulation. Cytological and macromolecular changes luring sporulation. Heat resistance and sporulation. Bacterial Chemolithotrophy: Physiological groups of chemolithotrophs, ammonia oxidation by members of Genus Nitroso group, nitrite oxidation by Nitro group of genera. Oxidation of molecular nydrogen by hydrogeno-monas species. Ferrous and sulfur/sulfide oxidation by Thiobacillus species. Exercise: Concept Maps, Application Articles, Experimental evidence.	
--	--

1. Caldwell D.R. (1995) Microbial Physiology and Metabolism. Brown Publishers.

2. Moat A.G., Foster J.W. and Spector M.P. (2002). Microbial Physiology, 4th edition. John Wiley and sons inc., publication.

3. Brun. Y.V. and Shimkets L.J. (2000) Prokaryotic Development ASM Press.

4. Kim B.H. and Gadd G.M. (2008). Bacterial physiology and metabolism. Cambridge University Press, Cambridge.

5.Cohen, Georges N.(2014) Microbial Biochemistry Third edition Springer Netherlands

6. White, D. (2011) *The Physiology and Biochemistry of Prokaryotes*, 4th Edition, Oxford University Press

7. Madigan, Bender, Buckley, Sattley & Stahl, (2019) Brock Biology of Microorganisms, 16th Edition Pearson education, USA

Modes of transaction

-Lecture -Problem solving -Panel discussion -Tutorial

L	Т	Р	Credits
3	0	0	3

Course Code: MIC. 524 Course Title: Environmental Microbiology

Total Hours: 45

Course Learning Outcomes:

The students will be able to:

CLO 1: Categorize the composition of industrial waste water.

CLO 2: Enlist various approaches for microbiological treatment of waste water. CLO 3: Discern various xenobiotic compounds generated by anthropogenic activities and learn about various microbiological approaches for bioremediation.

Unit/Hours	Content	Mapping with CLOs
Unit I 10 Hours	 Characteristic and composition of industrial waste water: General characteristics of industrial waste-water coming from sugar industries, tanneries, paper-pulp and alcohol industries, Concepts of C-BOD, N-BOD and COD, Oxygen-sag curve. Water borne risk to human health, Disinfection of drinking water with antimicrobial agents. Coliform test of potable water. Exercise: Concept mapping, Class discussion, spontaneous quizzes 	CLO 1
Unit II 12 Hours	Microbiological approaches for waste water treatment: Primary treatment of wastewater, treatment of industrial effluent by aerobic treatment methods; Trickling filters, and Oxidation ponds. Methods of anaerobic treatment of sludge. Bioaccumulation of heavy metal ions from industrial effluents. Removal of nitrogen and phosphorous and volatile organic matter from water. Exercise: Numerical exercises for BOD, COD calculation, Interpretation for oxygen sag curve	CLO 2
Unit III 12 Hours	Microbial Toxicology: General chemistry of pollutants. Particulate matter, poly-aromatic hydrocarbons, organosulfur, organophosphorous, organometallic compounds. Fog and smog, acid rain Dose-response relationship, Determination of LD50, Effect of heavy metals, pesticides on the microbial population in air, water and soil. Ames test to determine the genotoxicity of toxicants. Mode of action of carcinogens, Microbial tolerance and resistance against heavy metals, antibiotics and pesticides. Exercise: Case studies, research paper discussion	CLO 3

Unit IV Hours	Degradation of Xenobiotics: Concepts of xenobiotics, bio-concentration and bio-magnification, Bio-transformation and biodegradation of xenobiotics like organophosphates and organohalides compounds, plastic, paints. Genetically Modified Organisms released and its environmental impact assessment and ethical issues. Exercise: One minute concepts, improved discussion. Ouizzes	
	improved discussion, Quizzes	

- 1. Baker, K.H. And Herson D.S. (1994). *Bioremediation*. MacGraw Hill Inc. N.Y.
- 2. E Eldowney, S. Hardman D.J. and Waite S. (1993). Pollution: Ecology and Biotreatment Longman Scientific Technical.
- 3. R. K. Trivedy (1998) Advances in Waste Water Treatment Technologies. Volumes II and I. Global Science Publication.
- 4. Lawrence, P., Wacekett, C. and Douglas Hershberger. (2000) Biocatalysis and Biodegradation: Microbial transformation of organic compounds. ASM Publications.
- 5. Christon J. Hurst (2001). A Manual of Environmental Microbiology. 2nd Edition. ASM Publications.
- 6. Ian Pepper, Charles Gerba, Terry Gentry (2014) *Environmental Microbiology* 3rd Edition; Academic Press.
- 7. N.S. Subba Rao. (2020). *Bio-fertilizers in Agriculture and Forestry*. CBS Publisher and Distributor.

Web Sources:

https://swayam.gov.in/

Modes of transaction:

- -Lecture
- -Demonstration
- -Lecture cum demonstration
- -Inquiry training
- -Group discussion
- -Field visits

L	Т	Р	Credits		
3	0	0	3		
Course Code: MIC.525					

Course Title: Microbial Pathogenicity

Total Hours: 45

Course Learning Outcomes (CLO):

The students will be able to:

CLO1. Describe virulence determinants – colonization, toxins, enzymes and invasiveness with varied examples from different pathogens.

CLO2. Illustrate molecular Koch's postulates and multiplicity of virulence factors and coordinated regulation of virulence genes type 1-IV secretion systems, importance of biofilms and quorum sensing

CLO3. Discuss about the emerging and reemerging pathogens.

CLO4. Discussion and evaluation of various tools and techniques used to study the epidemiology and diagnosis of various diseases.

Unit/Hours	Content	Mapping with CLOs
Unit I 11 Hours	Introduction and Techniques to Study Bacterial Pathogenesis: Host defence mechanisms such as Phagocytosis, opsonization and complement, Non-specific, innate and adaptive host defence. Genetic and Bioinformatics approaches, Proteomic approaches, Systems biology based approaches to Host pathogen Interaction. Human Microbiome and their role in therapeutics. Exercise: Student-generated test questions, Classroom Opinion Polls	CLO 1
Unit II 12 Hours	Molecular Microbial Pathogenicity: Molecular Koch's postulates, multiplicity of virulence determinants, coordinated regulation of virulence genes, and environmental regulation of virulence determinants by two component signal transduction systems, antigenic variation; type three secretion system (TTSS, T3SS), Role of biofilms and quorum sensing in microbial pathogenecity. Environmental changes and infectious diseases: Global warming-led increase in vector-borne and water-borne infectious diseases; Impact of increasing urbanization, international travel and trade on infectious diseases. Exercise: Quiz, Critical Thinking, Brainstorming	CLO 2

Unit III 10 Hours	Emerging and Re-emerging Pathogens: Illustrate emerging and re- emerging pathogens using <i>V. cholerae</i> 0139, X-MDR M. tuberculosis, <i>Helicobacter pylori,Entero-haemorrhagic</i> <i>E. coli</i> (EHEC), EBOLA, Bird/swine flu, MERS-CoV, SARS-CoV-, AIDS, and opportunistic fungal pathogens. Mechanisms of emergence of new pathogens: horizontal gene transfer (HGT) and pathogenicity islands (PAI). Exercise: Extempore of recent pathogenic events, Peer Review	CLO 3
Unit IV 12 Hours	Molecular Microbial Epidemiology: Objectives of microbial epidemiology. Biochemical and Immunological tools - biotyping, serotyping, phage typing,; Molecular typing: RAPD, rep (REP, ERIC, BOX)-PCR, IS based typing, PFGE, AFLP, MLST, VNTR and whole genome sequence; Rapid diagnostic principles: Nucleic acid probes in diagnostic microbiology, nucleic acid amplification methods, Real-time PCR, Lateral flow assays, diagnostic sequencing and mutation detection, automated instruments for detection / diagnosis of infectious agents. Exercise: Discussions and Group Learning, Paper discussion, hands-on training	CLO 4

- 1. Jawetz, Melnick, & Adelberg (2016) *Medical Microbiology* by Carroll KC, Hobdon JA, Miller S, Morse SA, Mietzner TA. Lange Publication.
- 2. Locht C and Simonet M, Caister (2012) Bacterial Pathogenesis: Molecular and Cellular Mechanisms by Academic Press.
- 3. Persing DH, Tenover FC, Hayden R, Leven M, Miller MB, Nolte FS, Tang YW, Belkum AAV. (2016) *Molecular Microbiology: Diagnostic Principles and Practice.* American Society for Microbiology Press.
- 4. Nelson KE and Williams CM (2019) *Infectious Disease Epidemiology: Theory and Practice.* Jones and Bartlett.
- 5. Mahon, Connie R. Lehman, Donald C. Manuselis, George (2007) *Textbook of Diagnostic Microbiology*. USA: Saunders.

- 6. World Organization for Animal Health: "Manual of Diagnostic Tests and Vaccines for Terrestrial Animals" Volumes I & II, 6th Edition, 2010.
- 7. Rao, Juluri R, Fleming, Colin C., Moore, John E., (2006) *Molecular Diagnostics: current technology and Applications.* Horizon Bioscience, U. K.

Web Sources

https://www.cdc.gov/ https://www.who./

Modes of transaction:

-Lecture -Demonstration -Lecture cum demonstration

-Inquiry training

	-G	roup discussion	L
т	D	Credita	

	Ĩ				
L	Т	Р	Credits		
3	0	0	3		

Course Code: MIC.530 Course Title: Research Methodology and Biostatistics

Total Hours: 45

Course Learning Outcomes:

Student will be able to:

CLO 1: Illustrate various aspects of research methods, ethics, technical and scientific writings and literature search.

CLO 2: Develop and formulate research questions and ideas and develop skill in understating the results published in the research paper

CLO 3: Recognize the concept of biosafety, biological risks and their importance in laboratories and research.

CLO 4: Demonstrate various bioinformatics tools and techniques to analyse data and to perform the interaction studies.

CLO 5: Design, plan and execute the experimental study.

CLO 6: Utilise various tools to collect and present data.

CLO 7: Demonstrate the outcome of results using biostatistical approaches in testing hypothesis, analyzing experimental data and interpreting the results.

Unit/Hours	Content	Mapping with CLOs
Unit I 10 Hours	General Principles of Research: Meaning and importance of research, critical thinking, formulating hypothesis and development of research plan, review of literature, interpretation of results and discussion.Scientific writing: writing synopsis, research manuscript and dissertation. Literature search and survey, e-Library, web-based literature search engines. Exercise: Research presentation and poster preparation. Plagiarism and open access publishing.	CLO 1 CLO2
Unit II 11 Hours	Bioethics and Biosafety: Good Laboratory Practices, Sterilization techniques, Cell and tissue culture techniques: Plants and animals. Biosafety for human health and environment. Biosafety issues for using cloned genes in medicine, agriculture, industry, and ecoprotection. Genetic pollution, Risk and safety assessment from genetically engineered organisms. CDC/DBT/ICMR guidelines for biosafety. Ethical theories, Ethical considerations during research, Ethical issues related to animal testing and human project. Intellectual property rights (IPRs). Exercise: Paper discussion (research paper versus review article), case studies on patent filing.	

Unit III 12 Hours	 Biostatistics: Differences between parametric and non-parametric statistics, Univariant and multivariant analysis. Frequency distribution. Mean, Median, Mode, Probability Distribution, Standard deviation, Variation, Standard error, significance testing and levels of significance, Hypothesis testing. Measures of central tendency and dispersal, Histograms, Probability distributions (Binomial, Poisson and Normal), Sampling distribution, Kurtosis and Skewness.Statistical Tools: Student's t-test, Paired t-test, Mann-Whitney U-test, Wilcoxon signed-rank, One-way and two-way analysis of variance (ANOVA), Standard errors of regression coefficients and types of correlation coefficient. Exercise: Problem solving, numerical, Training Games for Learners, Student-generated test questions. 	CLO 5 CLO 6 CLO 7
Unit IV 12 Hours	 Bioinformatics: Organization, management and analysis of biological data, use of computers in data analysis, biological databases - DNA sequence databases and protein sequence databases, BLAST, FASTA, multiple sequence alignment, primers in biology (design and types of primers) genome projects (human, <i>Arabidopsis</i> and other genome projects), NCBI, UCSC and other database searches. Exercise: Hands on training on bioinformatics tools, Quiz, Brainstorming. 	CLO 4

1. Gupta, S. (2005). *Research Methodology and Statistical Techniques*. Deep & Deep Publications (p) Ltd. New Delhi.

2. Kothari, C.R., Garg, G. (2019). *Research Methodology: Methods and Techniques.* 4th Edition, New Age International (p) Limited. New Delhi.

3. Fleming, D. O. and Hunt, D.L. (2006). *Biological Safety: Principles and Practices*. American Society for Microbiology, USA.

4. Rockman, H. B. (2004). *Intellectual Property Law for Engineers and Scientists*. Wiley-IEEE Press, USA.

5. Shannon, T. A. (2009). An Introduction to Bioethics. Paulist Press, USA.

6. Kauda J. (2012). *Research Methodology: A Project Guide for University Students*. Samfunds literature Publications.

7. Vaughn, L. (2009). *Bioethics: Principles, Issues, and Cases.* Oxford University Press, UK.

8. WHO (2005). Laboratory Biosafety Manual. World Health Organization.

9. Lesk, A.M. (2019). Introduction to Bioinformatics. 5th Edition, Oxford University Press, UK.

10. Ramsden, J. (2021). Bioinformatics: An Introduction (Series: Computational Biology). 4th Edition, Springer International Publishing.

11. Baxevanis, A.D. and Ouellette, B.F.F. (2005). *Bioinformatics: A Practical guide to the Analysis of Genes and Proteins*. Wiley-Interscience, USA.

12.Zvelebil, M. and Baum, J. (2007). *Understanding Bioinformatics*, Garland Science, New York, USA.

13. Mount, D. (2012). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press.

14. Orengo, C., Jones, D., Thornton, J. (2005). *Bioinformatics: Genes, Proteins and Computers* (Advanced Texts). Taylor and Francis Publishers.
15. Norman, G. and Streiner, D. (2014). *Biostatistics: The Bare Essentials*, Decker Inc. USA, 4th edition.

16. Rao Nageswara G. (2018) Biostatistics & Research Methodology, 1st Ed. PharmaMed Press

17. Samuels, M.L., Witmer, J., Schaffner, A. (2016). *Statistics for the Life Sciences.*, 5th edition, Prentice Hall publishers.

18. Emden, H.F. (2019). *Statistics for Terrified Biologists*. Blackwell Publishers.

19. <u>Thomas, C. George</u> (2020), <u>Research</u> <u>Methodology</u> and Scientific Writing. 2nd Edition. ; Ane Books pvt. Ltd.

20. Bryant, John A. & Velle, Linda LA (2019) <u>Introduction to bioethics</u>, 2nd Edition.

Web-links

- <u>https://www.cdc.gov/</u>
- <u>https://www.who./</u>

- <u>http://dbtindia.gov.in/regulations-guidelines/regulations/biosafety-programme</u>
- <u>https://pubmed.ncbi.nlm.nih.gov/</u>
- -<u>https://www.uniprot.org</u>-https://pubmed.ncbi.nlm.nih.gov/
- <u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>
- <u>https://scholar.google.com</u>

Modes of transaction

-Lecture

- -Demonstration
- -Lecture cum demonstration
- -Inquiry training
- -Panel discussion
- -Problem solving
- -Self-directed learning

L	Т	Р	Credits
0	0	6	3

Course Code: MIC.528 Course Title: Microbiology Practical-II

Total Hours: 90

Learning Outcomes:

The students will be able to:

CLO1.Outline the basic molecular biology, cell culture and immunological techniques and correlate them with their fundamental concepts in the subject CLO2.Assess the use of molecular biology, cell culture and immunological techniques in health and diseases,

CLO3.Elaborate the molecular biology techniques and their application to study bacterial and mammalian cells, cellular DNA, RNA, proteins along with different aspects of immune processes.

CLO4.Conduct and examine the experiments pertaining to the theory papers of environmental microbiology.

CLO5.Apply these observations and scientific ideas in the real life microbiology associated tribulations.

Unit/Hours	Content	Mapping with CLOs
Part A. Immunolog y and research Methololog y 30 Hours	 To perform Total Leukocyte Count/Differential Leukocyte count of the given blood sample. Separation of serum from blood. To isolate mononuclear cells from peripheral blood various lysis and separation methods. To analyse cell viability by dye exclusion method. Media preparation for animal cell culture. Growth and maintenance of cell lines. Recovery of cells from monolayer: Chemical and mechanical methods. To analyse cytotoxicity of a treatment in a given cell line and calculating LD50 dose. Lymphocyte proliferation assay. Double immunodiffusion test using specific antibody and antigen. To perform immunoelectrophoresis using specific antibody and antigen. Dot Immuno blot assay (DIBA). ELISA Polyacrylamide gel electrophoresis and Western blotting. Demonstration of Flow Cytometry. Immunohistochemistry: H & E staining, Fluorescent staining, 	CLO 1 CLO2 CLO3

BiologyReaction (PCR).CLO3 30 Hours 3. Ligation and E.coli transformation using chemical transformation, plating, colony selection, 4. Isolation of plasmid DNA, restriction enzyme digestion and agarose gel electrophoresis. 5. Construction of restriction map by single and double digestion, Designing DNA probe, Southern blot hybridization (demonstration only). 6. RNA isolation from biological samples. 7. cDNA synthesis and real time PCR (qPCR). 8. DNA sequencing (demonstration only). 9. NCBI BLAST search and Primer design. 10. Multiple Sequence Alignment and Phylogenetic analysis using MEGA 11. Determination of genes mapped within a specific chromosomal locus using GeneLoc integration resource and gene orthologue prediction using Ensembl. 12. Protein-protein interactions using STRING;	prediction using Ensembl.	•••	 chemical transformation, plating, colony selection, 4. Isolation of plasmid DNA, restriction enzyme digestion and agarose gel electrophoresis. 5. Construction of restriction map by single and double digestion, Designing DNA probe, Southern blot hybridization (demonstration only). 6. RNA isolation from biological samples. 7. cDNA synthesis and real time PCR (qPCR). 8. DNA sequencing (demonstration only). 9. NCBI BLAST search and Primer design. 10. Multiple Sequence Alignment and Phylogenetic analysis using MEGA 11. Determination of genes mapped within a specific chromosomal locus using GeneLoc integration resource and gene orthologue prediction using Ensembl. 12. Protein-protein interactions using STRING; 	CLO 1 CLO2 CLO3
---	---------------------------	-----	---	-----------------------

r		-
Part C.	1. Physical analysis of sewage/industrial effluent CLO4	
Environme	by measuring total solids, total dissolved solids CLO5	
ntal	and total suspended solids.	
Microbiolog	2. Determination of indices of pollution by	
y/Microbial	measuring BOD/COD of different effluents.	
Physiology	3. Bacterial reduction of nitrate from ground	
å	waters	
Metabolism	4. Isolation and purification of degradative plasmid	
aa	of microbes growing in polluted environment.	
30 Hours	5. Recovery of toxic metal ions of an industrial	
	effluent by immobilized cells.	
	6. Utilization of microbial consortium for the	
	treatment of solid waste [Municipal Solid	
	Waste].	
	7. Biotransformation of toxic chromium (+ 6) into	
	non-toxic (+ 3) by <i>Pseudomonas</i> species.	
	8. Tests for the microbial degradation products o	
	aromatic hydrocarbons /aromatic compounds.	
	9. Reduction of distillery spent wash (or any othe	
	industrial effluent) BOD by bacterial cultures.	
	10. Microbial dye decolorization/adsorption.	
	11. Isolation of Photosynthetic bacteria	
	12. Glucose uptake by E. coli / Saccharomyce	
	<i>cerevisiae</i> [Active and Passive diffusion]	
	13. Effect of UV, gamma radiations, pH	
	disinfectants, chemicals and heavy metal ions in	
	-	
	spore germination of Bacillus SP.	
	14. Determination of Iron Oxidation Rate o	
	Thiobacillus ferrooxidans.	
	15. Determination of Sulfur Oxidation Rate o	
	Thiobacillus thiooxidans.	
	16. Microbial degradation, decolorization and	
	adsorption of organic dyes (by free and	
	immobilized cells).	
	17. Estimation of calcium ions present in	
	sporulating bacteria by EDTA method.	
	18. Demonstration of utilization of sugars by	
	oxidation and fermentation techniques.	

Modes of transaction

- -Lecture cum demonstration

- -Problem Solving -Self-Learning -Inquiry training -Experimentation

Evaluation Criteria for Practical Courses: Students are evaluated for a total of 100 marks with following distribution:

Continuous assessment- 50 Marks:

Maintaining the lab records/notebooks: 15 Marks

Surprise test/quiz/objective type test during the semester: 15 Marks

Good laboratory Practices, Designing and execution of experiments: 10 Marks

Attendance during day to day practical: 10 Marks

Final Practical Examination- 50 Marks:

Minor Experiment (10 Marks), Major Experiment (to be performed, 20 Marks) and viva-voce (20 Marks)

Suggested Reading:

1. Michael J. Leboffe (2011) A Photographic Atlas for the Microbiology laboratory.

2. Prakash S. Bisen (2014) Laboratory Protocols in Applied Life Sciences. Taylor & Francis Group, LLC

3. John Harley (2016) *Laboratory Exercises in Microbiology*, 10th Edition by John Harley

4. Benson's Microbiological Applications Lab Manual, 2016.

5. James G. Cappuccino & Natalie Sherman (2014) *Microbiology: A Laboratory Manual*, 10th Edition 2014

6. Aneja KR (2014) Laboratory Manual of Microbiology and Biotechnology.

7. Alberts, B. Bray, D. Lews, J., Raff, M., Roberts, K. and Watson, J.D. (2010). *Molecular Biology of the Cell.* Garland publishers, Oxford.

8. Sambrook, J., Fritish, E.F., Maniatis, T. (2000). *Molecular cloning: A laboratory manual*. Cold Spring Harbor Laboratory Press, New York.

9. Fasman, G.D. (1989). *Practical Handbook of Biochemistry and Molecular Biology*. CRC Press, Taylor and Francis Group, UK.

10. Michael J. Leboffe (2011) A Photographic Atlas for the Microbiology laboratory.

11. Laboratory protocols in Applied Life Sciences (2014). Taylor & Francis Group, LLC

12. James G. Cappuccino & Natalie Sherman (2014) Microbiology: A Laboratory Manual, 10th Edition 2014

13. Aneja KR (2014) Laboratory Manual of Microbiology and Biotechnology.

14. Alberts, B. Bray, D. Lews, J., Raff, M., Roberts, K. and Watson, J.D. (2010). *Molecular Biology of the Cell.* Garland publishers, Oxford.

15. Sambrook, J., Fritish, E.F., Maniatis, T. (2000). *Molecular cloning: A laboratory manual*. Cold Spring Harbor Laboratory Press, New York.

9. Fasman, G.D. (1989). *Practical Handbook of Biochemistry and Molecular Biology*. CRC Press, Taylor and Francis Group, UK.

Software tools and Web Sources

BLAST, MEGA

- https://blast.ncbi.nlm.nih.gov/Blast.cgi
- <u>https://www.vlab.co.in</u>

- <u>https://www.cdc.gov/</u>
- <u>https://www.who./</u>

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.556 Course Title: Genetic Engineering and Recombinant DNA Technology

Total Hours: 45

Course Learning Outcomes:

The students will be able to:

CLO 1: Understand the several types of cloning vector and expression system CLO 2: Identify the application of basic molecular biology in manipulating and modifying genetic material, cells and organisms.

CLO3: Understand the recent advances of gene manipulation technology and their applications

CLO4: Utilize the acquired knowledge in a setting of Medical Biotechnology, Industrial Biotechnology, and Agricultural Biotechnology.

Unit/Hours	Content	Mapping with CLOs
Unit I 11 hours	Introduction to cloning, Enzymes, vectors and hosts used in DNA technology. Cloning techniques. Cloning and Expression Vector Systems: prokaryotic and eukaryotic vector system: Cloning in <i>E. coli</i> , Gram-positive bacteria, <i>Pichia</i> <i>pastoris</i> , Insect Cells and Mammalian Cells. Expression system, Fusion proteins, transcriptional and Signals. Exercise: online tool for cloning, Problem Solving,	CLO1
	Genetic Manipulation and Over expression of Recombinant Proteins: Model organisms, genetically modified plants and animals, Creating Transgenic, Knockouts, RNAi technology, CRISPR technology. Generation of Transient and stable cell lines. Overexpression and tagging of recombinant proteins in <i>E.coli</i> , driven by lac, T7 and Tet-regulatable promoters, Bacteria and Mammalian cell overexpression system. Exercise: Real time Data interpretation for different techniques, Brainstorming	CLO 2

Unit III 12 hours	Transcriptional Analysis of Gene Expression and Transcriptomics: Gene expression analysis by Northern Blotting, RT-PCR, EST analysis and the use of reporter genes. Enzymatic and bioluminescent reporters. Reporters used n protein localization and trafficking studies. Promoter analysis – deletion analysis and linker scanning analysis coupled to reporter assays, mapping ranscriptional start sites by S1 nuclease mapping, primer extension studies or 5' RACE. Transcriptome analysis by DD-PCR and EST analysis, DNA microarrays (cDNA arrays and oligo arrays), Serial Analysis of Gene Expression (SAGE), RNA-sequences. Exercise: Real time Data interpretation for different techniques, Discussions and Group Learning	CLO 3
Unit IV 12 hours	Fechniques and Applications of Recombinant DNA Technology: Analysis of protein-DNA and protein-protein nteractions, protein engineering andproteome analysis: Gel retardation assay, DNA footprinting by DNase I and chemical methods, yeast one-hybrid assay, ChIP- chip, ChIP-seq. Yeast two nybrid, three-hybrid, split hybrids and everse hybrid. Co-immunoprecipitation, pull-down, far western. Use of GFP and its variants in FRET analysis, use of BiFC. Phage display. Insertional and deletion nutagenesis. Site directed mutagenesis by conventional and PCR-based methods. Proteome analysis by 2D gel electrophoresis coupled to mass spectrometric analysis. Principles and used of MALDI-TOF and LC-MS platforms. PMF verses MS/MS. Protein arrays and their applications. Biosafety and Ethical considerations in rDNA and genetic engineering. Exercise: Thought experiments, Problem pased learning, Real time Data nterpretation for different techniques	CLO 4

- 1. Glick BJ, Patten CL. (2017) Molecular Biotechnology: Principles and Applications of Recombinant DNA. 5 th edition, American Society for Microbiology
- 2. Kurnaz IA. (2015) *Techniques in Genetic Engineering*.1st edition, CRC Press.
- 3. Primrose SB, Twyman R. (2006) *Principles of Gene Manipulationand Genomics*. 7th edition, Wiley-Blackwell.
- 4. Green MR, Sambrook J. (2012). *Molecular cloning: A laboratory manual*. 4th edition, Cold Spring Harbor Laboratory Press, New York.
- 5. Andreas Hofmann, Samuel Clokie (2018) ,Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology 8th edition Cambridge University Press

Modes of transaction

-Lecture -Problem Solving -Self-Learning -Inquiry training **Web Sources**

> <u>https://www.addgene.org/educational-resources/</u> <u>http://www.mrrottbiology.com/genetic-engineering--biotechnology.html</u>

L	Т	Р	Credits
2	0	0	2

Course Code: MIC. 529 Course Title: Basics in Microbiology (IDC)

Total Hours: 30

Course Learning Outcomes:

The students from different streams with a very basic knowledge and understanding of microbes, pathogens and their control will able to:

CLO 1: Impart a foundation of microbiology to the students from different backgrounds.

CLO 2: Understand the nutritional and growth requirements for different bacteria.

CLO 3: Acquire a broad understanding of different groups of microorganisms important in health, diseases and industry.

CLO 4: Outline the various methods for the control of microorganisms.

Unit/Hours	Content	Mapping with CLOs
Unit I 7 Hours	Introduction to Microbiology: Scope and history of Microbiology, Classification of Bacteria, Fungi, Protozoa, Algae, and viruses. Basic principles and techniques used in bacterial classification. Phylogenetic and numerical taxonomy. General characteristics, structure and classification of plant animal and bacterial viruses. Exercise: Spontaneous quiz on identification of microorganism based on given characteristic	CLO 1
Unit II 8 Hours	Microbial Growth, and Nutrition: Microbial growth. Bacterial generation time. Monoauxic, Diauxic and synchronized growth curves. Factors affecting microbial growth. Principles of microbial nutrition- Chemoautotrophs, chemo-heterotrophs, photoautotrophs and photo-heterotrophs. Types of growth media, pure culture methods. Culture maintenance and preservation Exercise: Data Interpretation of different growth curve, classifying microorganism based on nutritional requirements	CLO 2
Unit III 8 Hours	Pathogens: Medically important bacteria.Retroviruses, Viroids, Prions andemerging viruses such as HIV, Avian andswine flu viruses and SARS-CoV-2.Medically important fungi andprotozoans.Beneficial applications ofmicrobes: Human Microflora, Pre andProbiotics, Industrially importantmicrobes.Exercise:Groupwise discussion ontherapeutic approaches againstpathogenic microorganism	CLO 3

resistance mechanisms. Exercise: Case studies and hands-on experiments.
--

- 1. Madigan, M.T., Martinko, J.M., Bender, K., and Buckley, D. (2011) *Brock Biology of Microorganisms*, 13th Ed., Pearson Education, USA
- 2. Tauro, P., Kapoor,K.K. and Yadav, K.S. (1996). Introduction to Microbiology, New Age Pub., New Delhi
- 3. Pelczar, M.J. et al. (2020), *Microbiology- Concepts and Applications*, International Ed. McGraw Hill Publication, New York
- 4. Black, J.G. (2012), *Microbiology: Principles and Explorations*, 8 Sons, USA.
- 5. Willey, J.M., Sherwood, L., and Woolverton, C. (2013) *Prescott's Microbiology* 9th Revised Edition, McGraw Hill Higher Education, New York
- 6. Pommerville, J.C. (2009) *Alcamo's Fundamentals of Microbiology*, Jones and Bartlett Publishers.
- 7. Tortora, G.J., Funke, B.R., Case, C.L. (2016) *Microbiology -An Introduction*, Pearson education Pvt. Ltd. Singapore.
- 8. Talaro K.P, Chess B., (2018) *Foundations in Microbiology*, McGraw-Hill education

Web Sources:

https://www.biointeractive.org/ https://swayam.gov.in/ https://www.biointeractive.org/classroom-resources/bacterialidentification-virtual-lab

Modes of transaction

- -Lecture
- -Brain storming
- -Problem solving

Tools used

YouTube, Video, Google, PPT

L	Т	Р	Credits
2	0	0	2

Course Code: MIC. 539 Course Title: Introduction to Immune system (IDC)

Course Learning Outcomes:

The students will be able to:

CLO 1: Develop an awareness about the various components of the human immune system.

CLO 2: Delineate the human immune response as it defends the host against pathogens and malignancies.

CLO 3: Examine diseases associated with deficient or abnormal immune responses.

CLO 4: Understand the immunological basis of therapeutics and diagnostics.

Unit/Hours	Content	Mapping with CLOs
Unit I 7 Hours	Elements of the Immune system: Cells, Organs, and microenvironments of the immune system. Innate and adaptive immunity, cellular and humoral immunity, inflammatory and regulatory networks and small biochemical mediators (cytokines). Exercise: Students teaching on phylogenetic aspects of immune system	CLO 1
Unit II 8 Hours	Functionofimmunesystem:Discriminate between self and non-self.Afunctional immune system confers a stateof health through effective elimination ofinfectious agents (bacteria, viruses, fungi,and parasites)and through control ofmalignanciesbyprotectiveimmunesurveillance.Exercise:Panel discussion about evasionmechanism employed by pathogens	CLO 2
Unit III 7 Hours	Immunodeficiency and dysfunction as the basis of disease: Immune Deficiency and Immune dysfunction. Allergies, Types of hypersensitivity reactions. Immunity to microbes (bacteria, fungi, virus and protozoans), tumors and AIDS. Exercise: Case studies on immune disorders, Presentations	CLO 3
Unit IV 8 Hours	ImmunologicalProcessesandTherapeutics:Hybridoma technology andvaccine, natural, synthetic and genetic,development of vaccine.Methods forimmunoglobulindetermination-quantitative and qualitative antigen andantibodyreactions,agglutination-precipitation, immunofluorescenceELISAand Flowcytometry.Exercise:Problems on data interpretationforELISA,antibodyreactions	CLO 4

1. Abbas. (20218). *Cellular and Molecular Immunology*. 10th Edition CBS Publishers & Distributors, India.

2. Charles, A. and Janeway, J. R. (2001). *Immunobiology: The Immune system in health and disease*. Blackwell Publishing, USA.

3. Delves, P. J., Roitt, I. M. and Seamus, J. M. (2017). *Roitt's essential immunology (Series–Essentials)*.Blackwell Publishers, USA.

4. Elgert, K. D. (2009). *Immunology: Understanding the immune system*. Wiley-Blackwell, USA.

5. Kindt, T. J., Osborne, B. A. and Goldsby, R. A. (2013). *Kuby Immunology* 7th Edition. W. H. Freeman, USA.

6. Sawhney, S. K. and Randhir, S. (2005). *Introductory practical biochemistry*. Alpha Science International Ltd. New Delhi, India.

7. Tizard. (2009). Immunology: An Introduction. Cengage Learning, Thompson, USA

Web Sources:

https://swayam.gov.in/ https://www.biointeractive.org/

Modes of transaction

-Lecture -Problem Solving -Inquiry training -Team teaching Semester – III

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.551 Course Title: Industrial Microbiology

Total Hours: 45

Course Learning Outcomes

Student will be able to:

CLO 1: Understand the principles of upstream and downstream processes in fermentation technology

CLO 2: Production and purification of Alcohol, Antibiotics, Acid and enzymes through large scale processes.

CLO 3: Apply the knowledge of industrial microbiology in large-scale production of recombinant proteins.

CLO 4: Production and purification of vitamins and microbe based products.

Unit/Hou rs	Content	Mapping with Course Learning Outcome
Unit I 12 hours	Introduction: Scope and historical levelopment; Sources of industrially mportant microbes, strain development, ypes of fermentation and fermenters, process optimization, and In situ Fermentation cleaning and sterilization, Types of ermentation systems; Bioreactor designs and operations. Single use bioreactor. Sterilization esting of fermentor. Downstream processing of microbial products: Filtration, centrifugation, cell disruption, liquid-liquid extraction, chromatography, membrane processes, drying (lyophilization and spray drying), and crystallization. Exercise: Case studies, industry visits,	
	Microbes in Industry: Alcohol production- Preparation of medium, Fermentation process and recovery; Production of Malt beverages: Production of Beer- malting process, mashing process and finishing; other malt products. Production of Wine: Microbial process, wine from grapes, Fermentatio Production of listilled beverages or liquors, Microbial production of organic acids- vinegar production (substrate, Microbial processing and product recovery); Citric Acid- ermentation, recovery and uses; Lactic acid- ermentation, medium and manufacturing process, recovery and uses. Exercise: Panel Discussion, Industry visits, nands-on experiments, Concept Mapping	

Unit III (11 hours)	Development and production of microbial products: Organic Metabolites-Ethanol, Acetone; Citric acid, Acetic acid, Lactic acid, Amino acids; Enzymes- Amylases, Glucose isomerase, Proteases,; Vitamins- Vitamin B12, Riboflavin, B carotene; Antibiotics: beta-Lactam antibiotics; Amino acid and peptide antibiotics; Carbohydrate antibiotics; Tetracycline; Nucleoside antibiotics; Aromatic antibiotics. Recombinant biomolecules and therapeutic proteins. Exercise: Discussions and Group Learning, Concept Mapping.	CLO2 and CLO3
Unit IV (10 hours)	ApplicationofMicrobialProducts:Mushroom production Biopolymers-xanthan gum and PHA's (Bioplastics), Bioethanol, Biobutanol, Biodiesel, Biohydrogen production by using microorganisms. Biofertilizers. Single cell protein, Fermentation economics.Exercise:Problem based learning, Quiz, Critical Thinking, Brainstorming. Industrial visits.	CLO 4

- 1. Cruger W and Cruger A. (2004). *Biotechnology A Textbook of Industrial Microbiology*. Panima.
- 2. Nduka Okafor, Benedict C. Okeke (2018),Modern Industrial Microbiology and Biotechnology Second edition CRC Press
- 3. Allan Whitaker, Peter F. Stanbury, and Stephen J. Hall (2016) Principles of Fermentation Technology. Third Edition Butterworth-Heinemann
- 4. Gary Higton, Michael J. Waites, Neil L. Morgan, John S. Rockey (2001) Industrial Microbiology: An Introduction.
- 5. Richard H. Baltz , Arnold L. Demain , Julian E. Davies (2010) Manual of Industrial Microbiology and Biotechnology Third edition American Society for Microbiology Press
- 6. L.E.J.R. Casida (2019) Industrial Microbiology Second Edition New Age International Private Limited
- George Stephanopoulos, Aristos A. Aristidou, Jens Nielsen (1998)Metabolic Engineering: Principles and Methodologies Academic Press

Modes of transaction:

-Lecture

-Demonstration -Lecture cum demonstration -Inquiry training -Group discussion

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.552 Course Title: Food and Dairy Microbiology

Total Hours: 45

Course Learning Outcomes (CLO):

The students will be able to:

CLO1. Describe the food borne disease caused by bacteria and fungi and explain the environmental factor responsible for food spoilage.

CLO2. Explain and assess the microbiology of different types of food and food products.

CLO3. Develop and review industrial aspects of food and dairy microbiology.

CLO4. Explain about the food preservation methods, quality testing and different regulatory bodies.

Unit/Hours	Content	Mapping with CLOs
Unit I 11 Hours	Microbial Growth in Food: Intrinsic, extrinsic and implicit factors, Microbial nteractions, Inorganic, organic and antibiotic additives. Physical and chemical factors influencing the destruction of microorganisms including thermal death time, Z, F and D values. Food Borne Diseases: Importance and significance of microorganisms in food. Food borne diseases- Bacterial food porne diseases- (Staphylococcal ntoxication, Botulism, Salmonellosis, Shigellosis, EHEC E. coli infection, <i>Listeria monocytogenes</i> infection, <i>Clostridium perfringens</i> gastroenteritis; Bacillus cereus gastroenteritis; Food- porne fungi- Mycotoxins in foods and its mplication on crops. Exercise: Training Games for Learners,Problem-solving Activities for Learners	CLO 1
Unit II 13 Hours	Microbiology of Food: Microbial habitat of specific food materials, adaptations and changes in microbiome of vegetables, iruits, milk, fermented and non-fermented milk products, fresh meats, poultry and non-dairy fermented foods. Microbial spoilage of foods: Types and causes of spoilage of cereals and cereals products, spoilage of vegetables and fruits, spoilage of meat and meat products, spoilage of ish and other sea foods, spoilage of eggs and other poultry products, spoilage of milk and milk products. Exercise: Quiz, Critical Thinking, Brainstorming,	CLO 2

Unit III 11 Hours	Fermented and Dairy Food Products: Microorganisms involved in food ermentations. Starter cultures for ermented dairy products (<i>Streptococcus</i> <i>thermophillus</i> , <i>Lactobacillus bulgaricus</i>). Fermented milk products- Acidophilus and Bulgarian milk, yoghurt, cheese, Kefir, Koumiss; Fermented grains and regetable products - Sauerkraut, Soy sauce, Role of microorganisms in peverages – tea and coffee fermentations. Vinegar Fermentation. Prebiotic and Probiotics in foods and its benefits. Exercise: Problem based learning, Quiz, Critical Thinking, Brainstorming	CLO 3
Unit IV 10 Hours	Food Preservation and Safety: Use of High and low temperature, Control of water activity, Use of Radiations in preservation, Modified atmosphere packaging, High pressure processing, chemical preservatives and naturally occurring antimicrobials; Bacteriocins and their applications. Microbial testing of food, Microbiological quality standards of food and regulatory bodies: FDA (Food and Drug Administration), HACCP (Hazard Analysis and critical control points), FSSAI (Food Safety and Standards Authority of India). Exercise: Discussions and Group Learning, Concept Mapping	CLO 4

- 1. Ray, B. and Bhunia, A. (2013). *Fundamental Food Microbiology*, 5th revised edition. CRC press Inc.
- 2. Frazier, W.C. and Westhoff, D.C. (2013). *Food Microbiology*. 5th Ed. Tata McGraw Hill.
- 3. Doyle, M.P. and Buchanan, R.L. (2012), *Food Microbiology*, ASM Press, Washington.
- 4. Jay, J.M., Loessner, M.J. and Golden, D.A. (2005) *Modern Food Microbiology*, 7th ed. Springer-Verlag New York
- 5. Richard K. Robinson, (2002). Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products, Wiley-Blackwell; 3rd Edition.
- 6. Doyle, M. P. and Beuchat, L. R., 2007, Food Microbiology-Fundamentals and Frontiers, ASM Press.

7. Elmer H. Marth, James Steele, (2001). Applied Dairy Microbiology, Second Edition, CRC Press.

Modes of transaction:

-Lecture -Demonstration -Lecture cum demonstration -Inquiry training -Group discussion -Self-learning

- Field visits

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.553 Course Title: Medical Microbiology

Total Hours: 45

Course Learning Outcomes (CLO):

The students will be able to:

CLO1: Describe and explain the concept of various cellular processes during disease development.

CLO2: Describe and evaluate the relevance of microbes and diseases caused by pathogenic bacteria.

CLO3: Describe and explain the virus structure, pathogenesis and review the emerging viral diseases.

CLO4: Comprehend the clinical diagnostics and treatment of the different diseases caused by viruses.

Unit/Hours	Content	Mapping with course learning outcomes
Unit I 12 Hours	History and Molecular Basis of Microbial Pathogenesis: Historical levelopment in the field of medical microbiology, Establishment of pathogenic microorganisms: Entry, spread and tissue damage. Mechanism of pacterial adhesion, colonization and nvasion of mucous membranes of respiratory, enteric and urogenital tracts. Biofilms and quorum sensing, Quorum quenching modulation of apoptotic processes. Bacterial secretion system and its importance: Secretion pathway, SecB secretion pathway, SRP pathway, Fat pathway. Protein secretion and types of secretory systems in Gram-negative and Gram-positive bacteria. Sortases and njectosome. Exercise: Quiz, Critical Thinking, Brainstorming	CLO 1
Unit II 11 Hours	Introduction and Biology of Pathogenic Bacteria: Important developments in medical microbiology, Morphological characteristics, pathogenesis and aboratory diagnosis including rapid methods of following pathogenic bacteria; Staphylococcus, Streptococcus, Enterococcus, Escherichia coli, Neisseria, Klebsiella, Salmonella, Shigella, Vibrio, Campylobacter, Pseudomonas, Acinetobacter, Yersinia, Treponema, Haemophilus, Bordetella, Bacillus, Clostridium, Corynebacterium, Mycobacterium, Actinomyces, Nocardia, Fusobacterium, Listeria, Rickettsiae, Chlamydiae, Spirochetes. Nosocomial infections and their treatment. Exercise:Case Studies, Paper discussion, application Articles.	

Unit IV 11 Hours	Oncogenic Viruses: Oncogenic viruses, oncogenic DNA and RNA viruses, viral transformation by activation of cellular signal transduction pathways, viral transformation via cell cycle control pathways. Diagnostic Virology :	
	Visualization and enumeration of virus particles, Detection of viruses: physical, piological, immunological and molecular methods. Serological methods. Viruses as therapeutic agents: Viral Chemotherapy and Vaccine, Fusion or entry inhibitors, Nucleoside analogs, reverse transcriptase nhibitors, protease inhibitors: mechanism of action and drug resistance. Recent advances in development of antiviral vaccines. Exercise: Case Studies, Discussions and Group Learning	

Suggested Reading:

- 1. Atlas, R.M. (1994) Principles of Microbiology, McMillan, New York
- 2. Tortora, G.J., Funke, B.R. and Case, C.L. (2016). *Microbiology: An Introduction.* Benjamin Cummings, USA.
- 3. Madigan, M.T., Martinko, J.M., Bender, K., and Buckley, D. (2011) Brock Biology of Microorganisms, 13th Ed., Pearson Education, USA.
- 4. Jawetz, Melnick, & Adelberg (2016) *Medical Microbiology* by Carroll KC, Hobdon JA, Miller S, Morse SA, Mietzner TA. Lange Publication.
- 5. Locht C and Simonet M, Caister (2012) Bacterial Pathogenesis: Molecular and Cellular Mechanisms by Academic Press.
- Persing DH, Tenover FC, Hayden R, Leven M, Miller MB, Nolte FS, Tang YW, Belkum AAV. (2016) *Molecular Microbiology: Diagnostic Principles and Practice.* American Society for Microbiology Press.
- 7. Nelson KE and Williams CM (2019) *Infectious Disease Epidemiology: Theory and Practice.* Jones and Bartlett.
- 8. World Organization for Animal Health: "Manual of Diagnostic Tests and Vaccines for Terrestrial Animals" Volumes I & II, 6th Edition, 2010.
- 9. Rao, Juluri R, Fleming, Colin C., Moore, John E., (2006) *Molecular Diagnostics: current technology and Applications.* Horizon Bioscience, U. K.
- 10. Dimmock N., Easton A., Leppard K (2016) Introduction to Modern Virology. Blackwell Publishing.
- 11. Wanger, K. Hewiett M., Bloom D., Camerini D. (2007). *Basic Virology* Blackwell Publishing.

12. Cann AJ (2015) *Principles of Molecular Virology*. Elsevier Academic Press.

 Flint S. J., L.W. Enquist, V.R. Racaniello, A.M. Skalka (2015) Principles of Virology: Molecular Biology, Pathogenesis and Control of Animal Viruses. 4th edition. ASM Press.

Web Sources

https://www.cdc.gov/ https://www.who./

Modes of transaction

-Lecture -Problem Solving -Self-Learning -Inquiry training -Co-operative learning -Team teaching

L	Т	Р	Credits
0	0	6	3

Course Code: MIC.554 Course Title: Microbiology Practical –III

Total Hours: 90

Learning Outcomes:

The students will be able to:

CLO1.Conduct and examine the experiments pertaining to the theory papers of industrial and food and dairy microbiology.

CLO2. Apply these observations and scientific ideas in the real life microbiology associated tribulations.

CLO3. Plan experiments related to clinical microbiology and virology which will enhance their laboratory skills, and scientific knowledge.

CLO4. Distinguish between various types of microbial media, culturing methods,

CLO5. Inspect and isolate the microbes from the day to day sources.

Course Content

Unit/Hours	Content	Mapping with CLOs
------------	---------	-------------------

Industrial and Food & Dairy Microbiology 50 Hours	 Isolation of industrially important nicroorganisms for microbial processes (citric / actic/ alpha amylase) and improvement of strain for increase yield by mutation. Determination of Thermal Death Point (TDP) and Thermal Death Time (TDT) of microorganisms for design of a sterilizer. [a]Determination of growth curve of a supplied microorganism and also determines substrate degradation profile.[b]Compute specific growth rate (m), growth yield (Y) from the above. Extraction of Citric acid/Lactic acid by salt precipitation. Product concentration by vacuum concentrator Cell disruption for endoenzymes by sonication. Microbiological examination of fresh and canned foods, mushrooms, spoiled foods and fruits, milk and milk products Microbiological quality testing of milk (MBRT test). 	
	 specific growth rate (m), growth yield (Y) from the above. 4. Extraction of Citric acid/Lactic acid by salt precipitation. 5.Product concentration by vacuum concentrator 6 Cell disruption for endoenzymes by sonication. 7. Microbiological examination of fresh and canned foods, mushrooms, spoiled foods and fruits, milk and milk products 8. Microbiological quality testing of milk (MBRT test). 9 Isolation of toxin producing organisms and estimation of their toxins in different foods 10 Extraction of Mycotoxins from contaminated food. 11. Isolation of bacterial and fungal probiotics 12. Development of probiotics <i>in vitro</i>. 13. To study various food preservation methods. 14. Standard method for bacteriological water analysis: Presumptive, confirmatory and completed test. 15. Microbial growth studies. 16. Isolation of industrially important microorganisms for microbial processes (citric / lactic/ alpha amylase) and improvement of strain for increasing yield by mutation. 17. Determination of Thermal Death Point (TDP) and Thermal Death Time (TDT) of 	
	 microorganisms for design of a sterilizer. 18. Monitoring of dissolved oxygen during aerobic fermentation 19. Biomass production (Baker's yeast and <i>Spirulina</i>). 	

 20. Production of beverages (alcohol and wine). 21. Estimation of the fermentation products by titration Method 22. Isolation of food poisoning bacteria from contaminated foods, Dairy products 23. Production of fermented milk by Lactobacillus acidophilus. 	s
--	---

 Virology 2. Preparation of different types of culture media/observation. Blood Agar, Chocolate CLO 4 Agar, Mannitol salt agar, Elair Parker medium, MacConkey agar, Lowensten-Jension medium, Biochemical media. 3. Tests for disinfectants (Phenol coefficient/RWC) 4. Study of normal micro-biota of mouth; isolation, identification and preservation of microorganisms 5. Study of normal micro-biota of skin; isolation identification and preservation of microorganisms 6. Identification and Biochemical tests of respiratory tract bacterial pathogen using avirulent strain of MTCC Culture of Streptococci/ Klebsiella pneumoniae. 7. Identification and Biochemical tests of gastrointestinal bacterial infection using avirulent strain of MTCC Culture of Salmonella /Shigella spp. 8. Laboratory examination and identification and biochemical tests of prespiratory tract bacterial pathogen using avirulent strain of MTCC Culture of Salmonella /Shigella spp. 8. Laboratory examination of sputum for pus cells and predominant bacteria. Ziehl-Neelsen staning to detect the presence of Mycobacterium using avirulent strain of MTCC Culture. 10. Determination of pathogenic bacteria (any three of E. coli, Salmonella, Stugellous) based on cultural, morphological and biochemical and biochemical tests (Cagulase, Catalase, WIDAL, VDRL tests). 13. PCR based diagnosis. 14. Estimation of infectivity titer of a virus samule using Plane assay. 	Bacteriology &	1. Methods for studying microbial respiration	CLO 3
tests (Coagulase, Catalase, WIDAL, VDRL tests). 13. PCR based diagnosis. 14. Estimation of infectivity titer of a virus	Virology	 Preparation of different types of culture media/observation. Blood Agar, Chocolate Agar, Mannitol salt agar, Blair Parker medium, MacConkey agar, Lowensten-Jension medium, Wilson Blair Bismuth sulphite medium, Biochemical media. Tests for disinfectants (Phenol coefficient/RWC) Study of normal micro-biota of mouth; isolation, identification and preservation of microorganisms Study of normal micro-biota of skin; isolation identification and preservation of microorganisms Identification and Biochemical tests of respiratory tract bacterial pathogen using avirulent strain of MTCC Culture of <i>Streptococci/ Klebsiella pneumoniae</i>. Identification and Biochemical tests of gastrointestinal bacterial infection using avirulent strain of MTCC Culture of <i>Salmonella / Shigella</i> spp. Laboratory examination and identification and biochemical tests of pus specimens using avirulent strain of MTCC Culture for <i>Staphylococcus aureus</i>, <i>Streptococcus pyogenes</i> and <i>Pseudomonas aeruginosa</i>. Laboratory examination of sputum: Collection of sputum. Microbiological examination of Sputum. Microbiological examination of MTCC Culture. Determination of MICC values for antimicrobial chemicals I. Identification of pathogenic bacteria (any three of <i>E. coli, Salmonella, Pseudomonas, Staphylococcus, Bacillus</i>) based on cultural, morphological and biochemical canceristics. 	CLO 4
		tests (Coagulase, Catalase, WIDAL, VDRL tests). 13. PCR based diagnosis.	

	15. Production of a purified virus stock and its quantitation.	
--	--	--

Modes of transaction

-Lecture cum demonstration

-Problem Solving

-Self-Learning

-Inquiry training

-Experimentation

Evaluation Criteria for Practical Courses: Students are evaluated for a total of 100 marks with following distribution:

Continuous assessment- 50 Marks:

Maintaining the lab records/notebooks: 15 Marks

Surprise test/quiz/objective type test during the semester: 15 Marks Good laboratory Practices, Designing and execution of experiments: 10 Marks

Attendance during day-to-day practical: 10 Marks

Final Practical Examination- 50 Marks:

Minor Experiment (10 Marks), Major Experiment (to be performed, 20 Marks) and viva-voce (20 Marks)

Suggested Reading:

1. Michael J. Leboffe (2011) A Photographic Atlas for the Microbiology laboratory.

2. Prakash S. Bisen (2014) Laboratory Protocols in Applied Life Sciences. Taylor & Francis Group, LLC

3. John Harley (2016) *Laboratory Exercises in Microbiology*, 10th Edition by John Harley

4. Benson's Microbiological Applications Lab Manual, 2016.

5. James G. Cappuccino & Natalie Sherman (2014) *Microbiology: A Laboratory Manual*, 10th Edition 2014

6. Aneja KR (2014) Laboratory Manual of Microbiology and Biotechnology.

7. Alberts, B. Bray, D. Lews, J., Raff, M., Roberts, K. and Watson, J.D. (2010). *Molecular Biology of the Cell.* Garland publishers, Oxford.

8. Sambrook, J., Fritish, E.F., Maniatis, T. (2000). *Molecular cloning: A laboratory manual*. Cold Spring Harbor Laboratory Press, New York.

9. Fasman, G.D. (1989). *Practical Handbook of Biochemistry and Molecular Biology*. CRC Press, Taylor and Francis Group, UK.

L	Т	Р	Credits
3	0	0	3

Course Code: MIC.559

Course Title: Microbial Biotechnology

Total Hours: 45

Course Learning Outcomes (CLO):

The students will be able to:

CLO1. Review and explain the use of microbes in the pharmaceutical industry. CLO2. Discuss and evaluate the role of microbial nanotechnology.

CLO3.Describe about the beneficial microbes for health and sustainable development of agriculture

CLO4.Discuss about the various regulatory practices of quality control and quality assurance.

Course Contents

Unit/Hours	Content	Mapping with CLOs
	Microbes in Pharmaceutical Products: Macromolecular, cellular and synthetic drug carriers. Immobilization procedures for pharmaceutical applications. Biosensors in pharmaceuticals. Production and application of microbial enzymes in pharmaceuticals. Vaccines and adjuvant- Traditional vaccine preparations, attenuated, dead or nactivated bacteria, Attenuated and nactivated viral vaccines, Toxoids, antigen-based and other vaccine preparations. New vaccine technology, DNA vaccines, synthetic peptide vaccines, multivalent subunit vaccines. Vaccine clinical trials. Exercise: Pro-Con Grids, Buzz Group Quescussion.	
11 Hours	Microbial Nanotechnology: Microbial synthesis of Nanoparticles. Synthesis of nanodrugs – metal nanoparticles and drug delivery vehicles – Nanoshells – Fectodentrimers Nanoparticle drug systems – Diagnostic applications of nanotechnology. Nanobiofertilizers for sustainabledevelopment of agriculture. Exercise: Quiz, Brainstorming, Problem pased learning sessions, Case studies	CLO 1 CLO 2

Unit III 12 Hours	Beneficial Microbes and their applications: Biofertilizers- Rhizobium, Azospirillum, Azospirillum, 	CLO 3
Unit IV 12 Hours	Regulatory Approvals and Clinical Trials: Good laboratory practice (GLP), Current Good Manufacturing Practice (CGMP), different phases of clinical trials, difference between biologics, biosimilar and bio-better, development of biosimilars and generic biomolecules, analysis of process economics, Design and layout of sterile product manufacturing unit, Quality assurance and quality management in pharmaceuticals ISO, WHO and US certification. Exercise: Problem based learning sessions, Case studies, Group discussion	CLO 4

Suggested Reading:

1. W. B. Hugo & A. D. Russell (2004) *Pharmaceutical Microbiology*. Blackwell Scientific Publications.

2. Frederick Kavanagh Analytical Microbiology Academic Press New York.

3. David C. Hooper, John S. Wolfson *Quinolinone antimicrobial agents*. ASM Washington DC.

4. Murray S.Cooper *Quality control in the Pharmaceutical Industry*. Academic Press New York.

5. H. J. Rehm & G.Reed, *Biotechnology*. VCH Publications, Germany.
6. S. P. Vyas & V.K.Dixit (2017) *Pharmaceutical Biotechnology*. CBS Publishers

& Distributors, New Delhi.

 Sydney H. Willig, Murray M. Tuckerman, William S. Hitchings, Mercel Dekker (2019) *Good Manufacturing Practices for Pharmaceuticals* New York.
 Gregory Gregoriadis Drug Carriers in biology & Medicine. Academic Press New York.

Modes of transaction

-Lecture -Problem Solving -Self-Learning

L	Т	Р	Credits
2	0	0	2

Course Code: MIC.558 Course Title: Entrepreneurship in Microbiology Total Hours: 30

Course Learning Outcomes: On the completion of this course, students will be able

CLO 1: Understand the fundamentals of microbiology and its applications in various industries.

CLO 2: Develop an entrepreneurial mindset and learn how to identify opportunities for microbial-based innovations. To gain insights about entrepreneurial behavior and skills.

CLO 3: Gain practical knowledge of business development, marketing, and intellectual property protection in the microbial sector.

CLO4: Acquire skills for designing and presenting a comprehensive business plan for microbial entrepreneurship.

Course Content

Unit/Hours	Content	Mapping with CLOs
Unit I (6 hours)	Definition and scope of microbial entrepreneurship, Overview of the microbial industry landscape, Case studies of successful microbial entrepreneurs, Microbial applications in healthcare, agriculture, energy, and biotechnology, Current trends and emerging technologies in microbial research Exercise: Oral presentation on recent development, online training, Group discussion.	CLO 1
Unit II (8 hours)	Building an effective entrepreneurial team, Leadership skills for managing a microbial startup, Ethical considerations and social responsibility in microbial entrepreneurship, Components of a comprehensive business plan, Writing and presenting a business plan for microbial entrepreneurship, Feedback and refinement of business plans Exercise: two/three Industry visits, seminar and interaction with entrepreneurs	CLO2, CLO3
Unit III (8 hours)	Ideation techniques for microbial entrepreneurship, Evaluating market potential and feasibility, Assessing intellectual property and regulatory considerations, formulating a business strategy for microbial innovations, Product development and prototyping, Funding options and financial management for microbial startups Exercise: Problem-solving Activities for Learners, Case Studies in Lesson Plans, industry visits.	CLO 4

Unit IV (8 hours)	Technology transfer in the microbial industry; Market research and target audience identification; Branding, positioning, and pricing strategies; Sales channels and distribution networks Exercise: Case Studies, Asking Questions, Project based learning.
----------------------	--

Modes of transaction:

-Lecture

-Demonstration

- Industrial visit

Suggested Reading:

- 1. Craig Shimasaki, Biotechnology Entrepreneurship Leading, Managing and Commercializing Innovative Technologies Second Edition May 16th 2020 ISBN: 9780128155851
- Natarajan Amaresan, Dhanasekaran Dharumadurai, Olubukola Oluranti Babalola Agricultural Microbiology Based Entrepreneurship Making Money from Microbes ISBN 978-981-19-5746-8; Published 30 November 2022
- 3. Natarajan Amaresan, Dhanasekaran Dharumadurai, Olubukola Oluranti Babalola Industrial Microbiology Based Entrepreneurship Making Money from Microbes ISBN 978-981-19-6663-7 Published: 17 November 2022
- 4. Bioentrepreneurship-Development A resource book by Biotech consortium India Limited (2020) <u>https://www.biotech.co.in/sites/default/files/2020-</u>01/Bioentrepreneurship-Development.pdf
- 5. Dr. Peter aKolchinsky The Entrepreneur's Guide to a Biotech Startup. 2001

L	Т	Р	Credits
2	0	0	2

Course Code: MIC.504 Course Title: Ethics for Science (VAC)

Total Hours: 30

Course Learning Outcomes:

Students from inter-disciplinary background will be able to:

CLO 1: Illustrate the basic good practices to be followed in research and overall as a student.

CLO 2: Formulate Classify the principles of ethics in research which will help them to understand the set of conduct norms applied in science.

CLO 3: Interpret the ethical issues involved in human, animals and plants research.

CLO 4: Judge the misconduct, fraud and plagiarism in research.

Course Content

Unit/Hours	Content	Mapping with Course Learning Outcome
Unit I 6 Hours	Introduction and Basic Principles of Ethics: Ethical theories, Ethical considerations during research, Data Manipulations. Ethical review procedure and committees. Exercise: Problem based learning, Real time Data to use the ethics and biosafety principles.	
Unit II 8 Hours	Ethics in Basic and Applied Sciences: Ethics in cloning, recombinant technology, Genetically Engineered Organisms and r-DNA based products. Animal Testing. Animal Rights, Perspectives and Methodology. Exercise: Paper discussion, Student Presentations	
Unit III 8 Hours	 Principles of Ethics in Clinical and Medical Sciences: Code of Ethics in Medical/clinical laboratories. Healthcare rationing, Ethical Issues of Xeno-transplantation, Ethics involved in embryonic and adult stem cell research, Ethics in assisted reproductive technologies: animal and human cloning and <i>In-vitro</i> fertilization. Ethical issues in MTP and Euthanasia. Types of consents and Human Genome project. Exercise: Critical Thinking, Discussions and Group Learning 	CLO 3

Unit IV 8 HoursEthics in Research: Intellectual property rights (IPRs), Patents copyrights. Fair use and plagiarism. Collaboration in research: authorship, resources sharing and mentoring, publications, conflict of interest, collaboration between academia and industry. Scientific misconduct. Exercise: Problem based learning, Brainstorming, Case Studies.	
---	--

Suggested Reading:

- 1. Clarke, A (2012). *Genetic Counseling: Practice and Principles*. Taylor & Francis
- 2. Fleming, D.O. and Hunt, D.L. (2006). *Biological Safety: Principles and Practices*. American Society for Microbiology, USA.
- 3. Mahop, M.T. (2010). Intellectual Property, Community Rights and Human Rights: The Biological and Genetic Resources of Developing Countries. Routledge.
- 4. Rockman, H.B. (2004). *Intellectual Property Law for Engineers and Scientists*. Wiley-IEEE Press, USA.
- 5. Shannon, T.A. (2009). An Introduction to Bioethics. Paulist Press, USA.
- 6. Thompson J and Schaefer, B.D (2013).Medical Genetics: An Integrated Approach. McGraw Hill.
- 7. Vaughn, L. (2009). *Bioethics: Principles, Issues, and Cases*. Oxford University Press, UK.
- 8. WHO. (2005). Laboratory Biosafety Manual. World Health Organization.
- 9. Ethical guidelines for biomedical research on human participants, ICMR.

Weblinks:

- <u>https://www.cdc.gov/</u>
- <u>https://www.who./</u>
- <u>http://dbtindia.gov.in/regulations-guidelines/regulations/biosafety-</u> programme
- <u>https://pubmed.ncbi.nlm.nih.gov/</u>
- <u>https://main.icmr.nic.in/sites/default/files/guidelines/ICMR_Ethical</u> <u>Guidelines_2017.pdf</u>

Modes of transaction

-Lecture

- -Demonstration
- -Self-learning
- -Group discussion

L	Т	Р	Credits
0	0	8	4

Course Code: MIC. 600 Course Title: Dissertation Part I

Total Hours: 120

Course Learning Outcomes

The students will be able to:

CLO1. Organize extensive review of literature.

CLO2. Apply various search engines and websites to identify the area of their research interest.

CLO3. Formulate the hypothesis and work plan with scientifically sound (and achievable) objectives backed by a comprehensive and detailed methodology.

Content:

Students will prepare a research proposal based on the literature review and extensive student-supervisor interactions involving discussion, meetings and presentations. Each student will submit a research/dissertation proposal of the research work planned for MSc. dissertation with origin of research problem, literature review, hypothesis, objectives and methodology to carry out the planned research work, expected outcome and bibliography.

Students can opt for dissertation work in industry, national institutes or Universities in the top 100 NIRF ranking. Group dissertation can be opted, with a group consisting of a maximum of four students. These students may work using a single approach or multidisciplinary approach. Research projects can be taken up in collaboration with industry or in a group from within the discipline or across the discipline

Evaluation Criteria				
Dissertation-One (Third Semester)				
	Marks	Evaluation		
Supervisor	50	Dissertation presentation	proposal	and
HoD and senior faculties of the department	50	Dissertation presentation	proposal	and

Evaluation Criteria

Modes of transaction

- -Self-Learning
- -Group discussion
- -Problem solving
- Seminars
- -Experimentation

Semester IV

L	Т	Р	Credits
0	0	40	20

Course Code: MIC.601 Course Title: Dissertation Part II

Total Hours: 600

Course Learning Outcomes:

The students will be able to:

CLO1. Organize extensive review of literature.

CLO2. Apply various search engines and websites to identify the area of their research interest.

CLO3. Formulate the hypothesis and work plan with scientifically sound (and achievable) objectives backed by a comprehensive and detailed methodology. CLO4. Compile the data obtained from the experimental plan.

CLO5. Analyze the results in light of established scientific knowledge to arrive at cogent conclusions.

CLO6. Demonstrate their substantial research-based capabilities.

Students will carry out their research work under the supervision of a faculty member. Students will interact with the supervisor through meetings and presentations on a regular basis. After completion of the research work, students will complete the dissertation under the guidance of the supervisor. The dissertation will include literature review, hypothesis, objectives, methodology, result, discussion and bibliography.

Evaluation Criteria

Dissertation (Fourth Semester)			
	Marks	Evaluation	
Supervisor	50	Continuous assessment (regularity in work, mid- term evaluation) dissertation report, presentation, final viva- voce	
External expert, HoD and senior faculty of the department	50	Dissertation report (30), presentation (10), final viva-voce (10)	

Modes of transaction

-Self-Learning

-Group discussion

- Experimentation

- Internship

-Industrial Training