# Central University of Punjab, Bathinda



## Ph.D. Microbiology Batch 2023 Department of Microbiology

#### **Graduate Attributes**

The students graduating will be skilled in scientific manpower with an understanding of research ethics and vast knowledge of microorganisms. Scholars will be equipped with the knowledge of microbial, molecular and cellular processes and their applications, which can be utilized for the betterment of society and careers in industry, agriculture, and applied research.

#### **Course Structure**

| Sr. | Course Co | Course Title                                    | L | Р | Credits |
|-----|-----------|-------------------------------------------------|---|---|---------|
|     |           |                                                 |   |   |         |
| 1   | MIC.701   | Research Methodology a<br>Computer Applications | 4 | 0 | 4       |
| 2   | MIC.702   | · · · · ·                                       | 4 | 0 | 4       |
| 2   | MIC.702   | Trends in Microbiology                          | 4 | 0 | 4       |
| 1   | MIC.751   | Research and Publicati                          | 2 | 0 | 2       |
|     |           | Ethics                                          |   |   |         |
| 2   | MIC.752   | Teaching Assistantship                          | _ | 2 | 1       |
| 3   | UNI.753   | Curriculum, Pedagogy a                          | 1 | - | 1       |
|     |           | Evaluation                                      |   |   |         |
|     |           | Total Credits                                   |   |   | 12      |

L: Lectures; P: Practical; Cr: Credits

Evaluation Criteria for Theory Courses End Semester Examination: Based on Subjective Type Test [100 Marks]

### Course Code: MIC.701

Course Title: Research Methodology and Computer Applications

LPCredits404

Total Hours: 60

## **Course Learning Outcomes**

Students will be able to:

CLO 1: Critically analyse, interpret, and synthesize existing scientific knowledge based on literature review.

CLO 2: Identify the knowledge gap and formulate a hypothesis and design experimental/theoretical work.

CLO 3: Apply good laboratory practices and biosafety protocols.

CLO 4: Appreciate the crucial issues in research ethics, like responsibility for research, ethical clearance for experimental studies and scientific misconduct.

CLO 5: Perform hypothesis testing on small and large data samples.

CLO 6: Use correlation and linear regression methods to find a relationship and good fit for the given data.

CLO 7: Retrieve various biological data from the appropriate databases for analysis.

CLO 8: Compare protein structures and perform structure-based drug designing.

| Unit/ Hours | Content                                                | Mapping   |
|-------------|--------------------------------------------------------|-----------|
|             |                                                        | with CLO  |
| I           | General Principles of Research: Meaning a              | CLO1 &    |
| 15 hours    | importance of research, Critical thinkin               | CLO2      |
|             | Formulating hypothesis and development                 |           |
|             | research plan, Review of literature, Interpretation    |           |
|             | results and discussion. Bibliographic ind              |           |
|             | Technical Writing: Scientific writing, writi           |           |
|             | synopsis, Research paper, Poster preparation, o        |           |
|             | presentations and Dissertations. Referen               |           |
|             | Management using various softwares such                |           |
|             | Endnote, reference manager, Refworks, e                |           |
|             | Communication skills: defining communication           |           |
|             | type of communication; techniques                      |           |
|             | communication, etc.                                    |           |
| II          | Introduction and Principles of Good L                  | CLO3& CLO |
| 15 hours    | <b>Practices:</b> Good laboratory practices, Biosafety |           |
|             | human health and environment. Biosafety issues         |           |
|             | using cloned genes in medicine, agricultu              |           |
|             | industry, and eco-protection, Biologi                  |           |
|             | containment and physical containment, Biosafety        |           |
|             | Clinical laboratories and biohazard manageme           |           |
|             | Physical, Chemical & Biological hazards and th         |           |
|             | mitigation. Biosafety level/category of pathoger       |           |

## **Course Content**

|              | Biosafety level of laboratories, WHO/CDC/D            |        |
|--------------|-------------------------------------------------------|--------|
|              | guidelines for biosafety.                             |        |
|              | <b>Research Ethics:</b> Ethical theories, Ethic       |        |
|              | considerations during research, consent. Anin         |        |
|              | handling/testing, Animal experimental models a        |        |
|              | animal ethics. Perspectives and methodology           |        |
|              | Ethical issues of the human genome project, ICI       |        |
|              | guidelines for biomedical and health research         |        |
|              | Intellectual property protection (IPP) and intellectu |        |
|              |                                                       |        |
|              | property rights (IPR), WTO (World Tra                 |        |
|              | Organization), WIPO (World Intellectual Prope         |        |
|              | Organization), GATT (General Agreement on Ta          |        |
|              | and Trade), TRIPs (Trade Related Intellecti           |        |
|              | Property Rights), TRIMS (Trade Related Investme       |        |
|              | Measures) and GATS (General Agreement on Trad         |        |
|              | in Services). Patents, Technolo                       |        |
|              | Development/Transfer Commercialization Relat          |        |
|              | Aspects, Ethics.                                      |        |
| III          | Computer Applications and Biostatistics:              | CLO 5& |
| 15 hours     | Introduction to spreadsheet, presentation too         |        |
| 10 110 011 0 | Reference Management software. Role of Clo            | 0200   |
|              | computing and HPC in life science research            |        |
|              | Introduction to Big data in biology and big da        |        |
|              |                                                       |        |
|              | analytics. Data types and sources – variables a       |        |
|              | types. Descriptive statistics of categorical data a   |        |
|              | continuous data. Estimation of parameters             |        |
|              | hypothesis testing: tests of significance, type I and |        |
|              | errors, z test, t test, analysis of variance (ANOV    |        |
|              | chi-square goodness-of-fit test. Regression a         |        |
|              | correlation. Statistical packages and th              |        |
|              | applications.                                         |        |
| IV           | <b>Bioinformatics:</b> Biological data: sequen        | CLO 7& |
| 15 hours     | structure, gene expression, pathways and molecu       | CLO 8  |
|              | interactions. Primary Sequence and structu            |        |
|              | databases. GEO, KEGG Database. Introduction           |        |
|              | Next generation Sequencing. Proteomics: Resource      |        |
|              | & repositories. Sequence analysis: Pair-w             |        |
|              | sequence comparison, database searching method        |        |
|              | BLAST, FASTA, PHI-BLAST and Multiple sequer           |        |
|              | alignment.Molecular phylogeny-buildi                  |        |
|              |                                                       |        |
|              | phylogenetic trees.                                   |        |
|              | Introduction to Protein structure, Structu            |        |
|              | comparison and visualization, Structure bas           |        |
|              | protein classification: CATH and SCOP. Introducti     |        |
|              | to structure-based drug designing. Structu            |        |

| genomics  | initiatives.  | Deep    | Learning    | in   | prote  |
|-----------|---------------|---------|-------------|------|--------|
| structure | prediction ar | nd Bion | nedical Ima | ge a | analys |

#### **Suggested Reading:**

1. Gupta, S. (2010). *Research Methodology and Statistical Techniques*. Deep & Deep Publications (P) Limited, New Delhi.

2. Kothari, C.R., Garg, G. (2019). *Research Methodology: Methods and Techniques*.4<sup>th</sup> Edition, New Age International (p) Limited. New Delhi.

3. Sahay, Vinaya and Pradumna Singh (2009). *Encyclopedia of Research Methodology in Life Sciences*. Anmol Publications. New Delhi.

4. Kauda J. (2012). Research Methodology: A Project Guide for University Students. Samfunds literature Publications.

5. Dharmapalan B. (2012). Scientific Research Methodology. Narosa Publishing

6. Norman, G. and Streiner, D. (2014). *Biostatistics:* The Bare Essentials. 4<sup>th</sup> Edition, PMPH-USA Limited.

7. Rao, P. P., S. Sundar and Richard, J. (2009). *Introduction to Biostatistics and Research Methods*.PHI learning.

8. Christensen, L. (2007). Experimental Methodology. Boston: Allyn & Bacon.

9. Fleming, D. O. and Hunt, D.L. (2006). *Biological Safety: Principles and Practices*. American Society for Microbiology, USA.

10. Rockman, H. B. (2004). Intellectual Property Law for Engineers and Scientists.Wiley-IEEE Press, USA.

11. Shannon, T. A. (2009). An Introduction to Bioethics. Paulist Press, USA.

12. Vaughn, L. (2012). *Bioethics: Principles, Issues, and Cases.* 2<sup>nd</sup> Edition, Oxford University Press, UK

13. Lesk, A.M. (2019). Introduction to Bioinformatics.5th Edition, Oxford University Press, UK.

14. Ramsden, J. (2021). Bioinformatics: An Introduction (Series: Computational Biology). 4<sup>th</sup> Edition, Springer International Publishing.

15. Mount. D.W. (2004) Bioinformatics: Sequence and Genome Analysis. 2<sup>nd</sup> Ed., CSHL Press, New York.

16.Branden, C. and J. Tooze, (1999) Introduction to Protein Structure, 2<sup>nd</sup> Ed., Garland Science, USA.

Course Code: LMS.702 Course Title: Trends in Microbiology

| L | Р | Credits |
|---|---|---------|
| 4 | 0 | 4       |

Total Hours: 60

#### **Course Learning Outcomes:**

The students will be able to:

CLO 1: Outline the concept of epidemiology and various cellular processes during disease development.

CLO 2: Comprehend the clinical diagnostics and treatment of the different diseases caused by microbes.

CLO 3: Describe virulence determinants – colonization, toxins, enzymes and invasiveness with varied examples from different pathogens.

CLO 4: Categorise 1-IV secretion systems, importance of biofilms and quorum sensing

CLO 5: Propose the concepts of antimicrobial, multidrug efflux pumps, extended spectrum  $\beta$ -lactamases, X-MDR, Mycobacterial tuberculosis, methicillin-resistant *S.aureus* (MRSA)

CLO 6: Categorise different kinds of environmental pollutants and xenobiotics and comprehend various bioremediation approaches towards their treatment.

CLO 7: Develop an understanding of different plant pathogens and resistance mechanisms employed by plants.

#### **Course Content**

| Unit/ Hour         | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mapping<br>with CLO |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| Unit-I<br>16 hours | Advanced Approaches in Host-pathogen interaction<br>Molecular basis of immune memory, Cancer immunology a<br>immunotherapy, Antiviral immunity (SARS-CoV-2), Immu<br>response during pregnancy, Transplantation immunolo<br>Vaccines. Genomics, bioinformatics, proteomics and syster<br>biology approaches to study host pathogen interaction<br>Next-Generation Sequencing (NGS) for the diagnosis a<br>monitoring of infectious diseases Recent advances in t<br>development of antibiotics and vaccines. Microb<br>metabolites, Human Microbiome and their role<br>therapeutics. Host directed therapies. Screening a<br>development approaches for new microbial products, Hig<br>content screening methods, antimicrobial <i>in-vitro</i> and <i>in-v</i><br>screening assays and metagenomics.                                        |                     |  |  |
| Unit-II<br>hours   | <b>Concepts in Environmental and Agricultu</b><br><b>Microbiolo</b> gy: Microbial approaches towards waste wa<br>treatment: oxidation ponds, trickling filters, heavy me<br>removal, nitrogen and phosphorus removal. Concepts<br>xenobiotics, Ames test to determine the genotoxicity<br>toxicants, biodegradation of xenobiotics li-<br>organophosphates and organohalides. Microbial association<br>Symbiosis, associate symbiosis and free living – bacter<br>actinomycetes, BGA and mycorrhizae. Screening a<br>applications strategies of PGPR: soil nutrients fixe<br>solubilizers and mobilizers. Advantages of mycorrhizal help<br>bacteria. Outline of biopesticides, bioinsecticid<br>bioherbicides and its application to agriculture and th<br>impact in agroindustry, transgenic approaches towar<br>enhanced crop production. |                     |  |  |

| Unit-III<br>17 hours | Pathogenesis of Selected Organisms: Prevalence,<br>Incidence, epidemic, endemic, pandemic, chronic, acu<br>DALY, YLL, HALE, Mortality, Morbidity<br>Spirochetes such as <i>Treponema pallidum</i> , <i>Borre</i><br><i>burgdorferi</i><br>& <i>Borrelia hermsii</i> . Intracellular pathogens/Gra<br>negative bacteria: <i>Salmonella</i> and <i>Helicobacter pylori</i> . Gra<br>positive bacteria: <i>Staphylococcus aure</i><br><i>Listeria monocyctis</i> . Myxobacteria: <i>Mycobacterium tube</i><br><i>losis</i> . Swine/Avian virus, MERS-CoV, Ebola, Flaviviruses a<br>SARS-CoV-2. Microbial colonization and adherer<br>strategies, Microbial invasion strategies, Protein and D<br>secreting systems and Pathogenicity Island. Antiger<br>variation, Biofilms and quorum sensing, modulation<br>apoptotic processes and microbial toxins. Molecu<br>approaches in clinical microbiology. Disease outbreat<br>integrated disease surveillance program by National Cen<br>for disease control. Diverse approaches for tackli<br>outbreaks. WHO Emergencies preparedness and respor<br>mechanisms. |      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Unit-IV<br>12 hours  | <b>Advances in Food Applied Microbiology:</b> Major Foodbord<br>diseases, Biological, chemical, and physical hazards of food<br>Microbiological testing of food, Hazard analysis and critic<br>control points (HACCP), Food legislation and standards, It<br>22000, Food and Drug Administration (FDA), Food Safa<br>and Standards Authority of India (FSSAI), genetical<br>modified foods. Probiotic strains - Lactic acid bacteria (LA<br>Lactobacillus, Leuconostoc, Pediococcus, Lactococcusa<br>Streptococcus - Bifidobacteria - Saccharomyces - Eschericic<br>coli - Bacillus - Enterococcus - Commercial probiotic strain<br>Genetically modified probiotics (GMP) Probiotic recip<br>Fermented and unfermented milk - Yogurt - Cheese<br>Sauerkraut - Garlic - Miso - Tempeh - Soy beverag<br>Microbial processing and product recovery); Fermentatic<br>process and recovery; Production of Malt beverages, Cit<br>Acid, Lactic acid-fermentation.                                                                                                                                                | CLO3 |

## Suggested Reading:

Michael F. Cole, (2019) Unifying Microbial Mechanisms: shared Strategies of Pathogenesis by Garland Science, USA

Michael Madigan, KellyBender, Daniel Buckley, W. Sattley, David Stahl (2018) Brock Biology of Microorganisms, 15th Global Edition Pearson Education, USA Denise G. Anderson, Sarah Salm, Deborah Allen (2015) Nester's Microbiology: A Human Perspective 8th edition McGraw-Hill Education, USA Reba Kanungo (Editor) (2020) Ananthanarayan and Paniker's Textbook of Microbiology, Eleventh Edition Universities Press (India) Pvt. Ltd.

Tortora, G.J., Funke, B.R. and Case, C.L. (2016). *Microbiology: An Introduction*. *12th Edition* Pearson Education, USA.

Abbas, A., Lichtman, A., Pillai S. (2022). *Cellular and Molecular immunology*. Elsevier

Murphy, K., Weaver, C. (2016) Janeway's Immunobiology. Garland science.

Pelczar, M. J., Chan, E.C.S. and Krieg, N.R. (2020). *Microbiology: Concepts and Applications*. McGraw-Hill Inc. USA.

Joanne Willey, Kathleen Sandman and Dorothy Wood (2019) *Prescott's Microbiology*. 11<sup>th</sup> Edition, McGraw-Hill Science, USA.

Tortora, G.J., Funke, B.R. and Case, C.L. (2016). *Microbiology: An Introduction*. Benjamin Cummings, USA.

Hal Kin (2015) Food Safety Management: Implementing a Food Safety Program in a Food Retail Business, Springer

Charalampopoulos, Dimitris, Rastall and Robert (2009). Prebiotics and Probiotics Science and Technology, Springer Publication.

Christon J. Hurst (2001). A Manual of Environmental Microbiology. 2nd Edition. ASM Publications.

Ian Pepper, Charles Gerba, Terry Gentry (2014) *Environmental Microbiology* 3rd Edition; Academic Press.

Research papers and reviews published in international journals from American Society of Microbiology press;Cell Host and Microbe, Cellular Microbiology, Immunity, Molecular Microbiology, Nature Reviews Microbiology, FEMS Microbiology Reviews,Trends in Microbiology,Microbiome etc.

#### **Course Title: Research and Publication Ethics**

| L | Р | Credit |
|---|---|--------|
| 2 | 0 | 2      |

Course Code: MIC.751

Total Hours: 30

**Course Learning Outcomes:** Students will be able to:

CLO1: Familiarize with the ethics of research.

CLO2: Illustrate the good practices to be followed in research and publication.

CLO3: Judge the misconduct, fraud and plagiarism in research.

CLO4: Utilize various online resources and software to analyze their research output.

#### **Course Content**

| Unit/ Hou      | Content                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mapping wi<br>CLO |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| I<br>3 hours   | Philosophy and Ethics<br>Introduction to Philosophy: definition, nature and scop<br>content, branches<br>Ethics: definition, moral philosophy, nature of mo<br>judgements and reactions                                                                                                                                                                                                                                                         |                   |
| II<br>5 hours  | Scientific Conduct<br>Ethics with respect to science and research<br>Intellectual honesty and research integrity<br>Scientific misconducts: Falsification, Fabrication, a<br>Plagiarism (FFP)<br>Redundant publications: duplicate and overlappin<br>publications, salami slicing<br>Selective reporting and misrepresentation of data                                                                                                          | CLO1 & CLO        |
| III<br>7 hours | Publication EthicsPublicationethics: definition, introduction and importanceBest practices/ standards setting initiatives aguidelines: COPE, WAME, etc.Conflicts of interestPublication misconduct: definition, concept, problems thlead to unethical behaviour and vice versa, typesViolation of publication ethics, authorship and contribushipIdentification of publication misconduct, complaints aappealsPredatory publishers and journals |                   |
| IV<br>4 hours  | Open Access publishing<br>Open access publications and initiatives<br>SHERPA/RoMEO online resource to check publish<br>copyright & self-archiving policies<br>Software tool to identify predatory publication developed<br>SPPU<br>Journal finder/journal suggestion tools viz. JANE, Elsev<br>Journal Finder, Springer, Journal Suggester etc.                                                                                                 |                   |
| V<br>4 hours   | Publication Misconduct<br>Group Discussions: Subject-specific ethical issues, Fl<br>authorship; conflicts of interest; complaints and appea<br>examples and fraud from India and abroad<br>Software tools: Use of plagiarism software like Turnit<br>Urkund and other open source software tools                                                                                                                                                |                   |

| 7 hours | Databases and Research Metrics<br>Databases: Indexing databases; Citation database: Web<br>Science, Scopus etc.<br>Research Metrics: Impact Factor of journal as per Journ<br>Citation Report, SNIP, SJR, IPP, Cite Score; Metrics:<br>index, g-index, i10 index, almetrics |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

## **Course Title: Teaching Assistantship**

| L | Р | Credit |
|---|---|--------|
| 0 | 2 | 1      |

Course Code: MIC.752

Total Hours: 30

## **Course Learning Outcomes:**

At the end of this skill development course, the scholars shall be able to CLO1: familiarize themselves with the pedagogical practices of effective classroom delivery and knowledge evaluation system

CLO2: manage large and small classes using appropriate pedagogical techniques for different types of content

## **Activities and Evaluation:**

The scholars shall attend Master degree classes of his/her supervisor to observe the various transaction modes that the supervisor follows in the classroom delivery or transaction process one period per week.

The scholars shall be assigned one period per week under the direct supervision of his/her supervisor to teach the Master degree students adopting appropriate teaching strategy(s).

The scholars shall be involved in examination and evaluation system of the Master degree students such as preparation of questions, conduct of examination and preparation of results under the direction of the supervisor.

At the end of the semester, the supervisor shall conduct an examination of teaching skills learned by the scholar as per the following **evaluation criteria**:

The scholars shall be given a topic relevant to the Master degree course of the current semester as his/her specialization to prepare lessons and deliver in the classroom before the master degree students for one hour (45 minutes teaching + 15 minutes interaction).

The scholars shall be evaluated for a total of 50 marks comprising content knowledge (10 marks), explanation and demonstration skills (10 marks), communication skills (10 marks), teaching techniques employed (10 marks), and classroom interactions (10).

## Course Title: Curriculum, Pedagogy and Evaluation Course Code: UNI.753

| L | Т | Р | Credit |
|---|---|---|--------|
| 1 | 0 | 0 | 1      |

Total Hours: 15

#### **Course Learning outcomes:**

After completion of the course, scholars shall be able to:

CLO1: analyze the principles and bases of curriculum design and development CLO2: examine the processes involved in curriculum development

CLO3: develop the skills of adopting innovative pedagogies and conducting students' assessment

CLO4: develop curriculum of a specific course/programme

| Unit/<br>Hours | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mapping wi<br>CLO |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| I<br>4 hours   | Bases and Principles of Curriculum<br>1. Curriculum: Concept and Principles of curriculu<br>development, Foundations of Curriculum Development<br>2. Types of Curriculum Designs- Subject centered, learn<br>centered, experience centered and core curriculu<br>Designing local, national, regional and global spect<br>curriculum. Choice Based Credit System and<br>implementation.                                                                                                                   |                   |
| II<br>4 hours  | Curriculum Development<br>1. Process of Curriculum Development: Formulation<br>graduate attributes, course/learning outcomes, conte<br>selection, organization of content and learni<br>experiences, transaction process.<br>2. Comparison among Interdisciplina<br>multidisciplinary and trans-disciplinary approaches<br>curriculum.                                                                                                                                                                   |                   |
| III<br>3 hours | <ul> <li>Curriculum and Pedagogy</li> <li>1. Conceptual understanding of Pedagogy.</li> <li>2. Pedagogies: Peeragogy, Cybergogy and Heutago<br/>with special emphasis on Blended learning, Flipp<br/>learning, Dialogue, cooperative and collaborative learning</li> <li>3. Three e- techniques: Moodle, Edmodo, Goo<br/>classroom.</li> </ul>                                                                                                                                                           |                   |
| IV<br>4 hours  | <ul> <li>Learners' Assessment</li> <li>1. Assessment Preparation: Concept, purpose, a principles of preparing objective and subjective question</li> <li>2. Conducting Assessment: Modes of conducts assessment – offline and online; use of ICT in conducts assessments.</li> <li>3. Evaluation: Formative and Summat assessments, Outcome based assessment, and scorr criteria.</li> <li>Activity: Develop curriculum for a course/programmer related to the research scholar's discipline.</li> </ul> |                   |

Transaction Mode

Lecture, dialogue, peer group discussion, workshop

Evaluation criteria

There shall be an end-term evaluation of the course for 50 marks for duration of 2 hours. The course coordinator shall conduct the evaluation.

## Suggested Readings

Allyn, B., Beane, J. A., Conrad, E. P., & Samuel J. A., (1986). *Curriculum Planning and Development*. Boston: Allyn & Bacon.

Brady, L. (1995). *Curriculum Development*. Prentice Hall: Delhi. National Council of Educational Research and Training.

Deng, Z. (2007). Knowing the subject matter of science curriculum, *Journal of Curriculum Studies*, 39(5), 503-535.https://doi.org/10.1080/00220270701305362

Gronlund, N. E. & Linn, R. L. (2003). *Measurement and Assessment in teaching*. Singapore: Pearson Education

McNeil, J. D. (1990). *Curriculum: A Comprehensive Introduction*, London: Scott, Foreman/Little

Nehru, R. S. S. (2015). *Principles of Curriculum*. New Delhi: APH Publishing Corporation.

Oliva, P. F. (2001). *Developing the curriculum* (Fifth Ed.). New York, NY: Longman Stein, J. and Graham, C. (2014). *Essentials for Blended Learning: A Standards-Based Guide*. New York, NY: Routledge.

#### Web Resources

https://www.westernsydney.edu.au/\_\_data/assets/pdf\_file/0004/467095/Fun damentals\_of\_Blended\_Learning.pdf

https://www.uhd.edu/academics/university-college/centers-offices/teachinglearning-excellence/Pages/Principles-of-a-Flipped-Classroom.aspx

http://leerwegdialoog.nl/wp-content/uploads/2018/06/180621-Article-The-Basic-Principles-of-Dialogue-by-Renate-van-der-Veen-and-Olga-Plokhooij.pdf