- Chand U, Kushawaha PK. Silibinin-loaded chitosan-capped silver nanoparticles exhibit potent antimicrobial, antibiofilm, and anti-inflammatory activity against drug-resistant nosocomial pathogens. J Biomater Sci Polym Ed. 2024 May 24:1-23. doi: 10.1080/09205063.2024.2355744. IF-3.6
- Chand, U., Kushawaha, P.K. Ursolic Acid Loaded Chitosan Coated Silver Nanoparticles Exhibits Robust Antibacterial Activity Against Drug Resistant Nosocomial Pathogens: Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, and Klebsiella peumoniae. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01394-0. IF-3.0
- Kumar, R., & Kushawaha, P. K. (2024). Interferon inducible guanylate-binding protein 1 modulates the lipopolysaccharide-induced cytokines/chemokines and mitogen-activated protein kinases in macrophages. Microbiology and immunology, https://doi.org/10.1111/1348-0421.13123. IF-2.6
- Kavita, Om, H., Chand, U., & Kushawaha, P. K. (2024). Postbiotics: An alternative and innovative intervention for the therapy of inflammatory bowel disease. Microbiological research, 279, 127550. https://doi.org/10.1016/j.micres.2023.127550. IF-6.7
- Maurya, C., Bajpai, S., Kushwaha, P. K., Chand, U., & Singh, S. (2024). Synthesis, spectroscopic characterization, and in vitro antimicrobial study of novel organotellurium (IV) diphenyldithiocarbamate derivatives. Journal of Sulfur Chemistry, 45(4), 477–489. https://doi.org/10.1080/17415993.2024.2360441.
- Maurya, C., Bajpai, S., Kushwaha, P. K., Chand, U., & Singh, S. (2024). Synthesis, Characterization and in vitro Antimicrobial Activity of Organotellurium Decorated 10-Membered Tetraazamacrocyclic Complexes of Cobalt (II). Asian Journal of Chemistry, 36(5), 1056–1060. https://doi.org/10.14233/ajchem.2024.31358.
- Maurya, C., Bajpai, S., Deepak, D., Kushwaha, P. K., Chand, U., & Singh, S., Kamboj, M., & Srivastava, P. (2024). Synthesis, Characterization and Antibacterial studies of New Organotellurium Carboxylates. African Journal of Biological Sciences, Volume 6, Issue Si2. doi: 10.33472/AFJBS.6.Si2.2024PP.263-276.
- Dhapola, R., Kumari, S., Sharma, P., Kumar Kushawaha, P., & HariKrishnaReddy, D. (2024). Update on monkeypox virus infection: Focusing current treatment and prevention approaches. Fundamental & clinical pharmacology, 10.1111/fcp.12980. Advance online publication. https://doi.org/10.1111/fcp.12980
- Reddy, G. A., Handa, M., Garabadu, D., Kumar, R., Kushawaha, P. K., & Shukla, R. (2023). Transferrin decorated PLGA encumbered moxifloxacin nanoparticles and in vitro cellular studies. Drug development and industrial pharmacy, 49(1), 129–138. https://doi.org/10.1080/03639045.2023.2185463
- Handa, M., Kumar, K., Garabadu, D., Kushawaha, P. K., & Shukla, R. (2023). Bilayer fixed-dose combination tablet for curcumin microparticles and piroxicam and in vitro evaluation. Therapeutic delivery, 10.4155/tde-2022-0043. Advance online publication. https://doi.org/10.4155/tde-2022-0043
- Chand, U., Priyambada, P., & Kushawaha, P. K. (2023). Staphylococcus aureus vaccine strategy: Promise and challenges. Microbiological research, 271, 127362. https://doi.org/10.1016/j.micres.2023.127362. IF-6.7
- Om, H., Chand, U., & Kushawaha, P. K. (2023). Human anaerobic microbiome: a promising and innovative tool in cancer prevention and treatment by targeting pyruvate metabolism. Cancer immunology, immunotherapy: CII, 72(12), 3919–3930. https://doi.org/10.1007/s00262-023-03551-y. IF-4.6
- Chand, U., & Kushawaha, P. K. (2023). Nano-immunomodulators: prospective applications to combat drug resistant bacterial infections and related complications. Journal of biomaterials science. Polymer edition, 34(18), 2577–2597. https://doi.org/10.1080/09205063.2023.2265619. IF-4.6
- Kumar, R., & Kushawaha, P. K. (2022). Interferon inducible guanylate binding protein 1 restricts the growth of Leishmania donovani by modulating the level of cytokines/chemokines and MAP kinases. Microbial pathogenesis, 168, 105568. IF-3.7
- Kushawaha, P. K., Pati Tripathi, C. D., & Dube, A. (2022). Leishmania donovani secretory protein nucleoside diphosphate kinase b localizes in its nucleus and prevents ATP mediated cytolysis of macrophages. Microbial pathogenesis, 166, 105457. IF-3.7
- Bais SS, Ratra Y, Khan NA, Pandey R, Kushawaha PK, Tomar S, Medigeshi G, Singh A, Basak S (2019): Chandipura Virus Utilizes the Prosurvival Function of RelA NF-κB for Its Propagation. J Virol. 2019 Jun 28;93(14). IF-4.8
- Tripathi CP, Kushawaha PK, Sangwan RS, Mandal C, Misra Bhattacharya S, Dube A (2017): Withania somnifera chemotype NMITLI 101R significantly increases the efficacy of antileishmanial drugs by generating strong IFN-γ and IL-12 mediated immune responses in Leishmania donovani infected hamsters. Phytomedicine. Nov. S0944-7113(16)30216-1. IF-6.7
- Joshi M, Yadav NK, Rawat K, Tripathi CP, Jaiswal AK, Khare P,Tandon P, Baharia RK , Das S, Gupta R, Kushawaha PK , Sundar S , Sahasrabuddhe AA, Dube A (2016): Comparative analysis of cellular immune responses in treated Leishmania patients and hamsters against recombinant Th1 stimulatory proteins of Leishmania donovani. Front. Microbiol. March 2016 | Volume 7 | Article 312| IF-4.0
- Jaiswal, Khare P, Joshi S, Kushawaha PK, Sundar S, Dube A (2014): Th1 stimulatory proteins of Leishmania donovani: Comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis. PLoS One. Sep 30;9(9): e108556. IF-3.1
- Tripathi CD, Gupta R, Kushawaha PK, Mandal C, Misra Bhattacharya S, Dube A (2014). Efficacy of Withania somnifera chemotypes NMITLI - 101R, 118R and Withaferin A against experimental visceral leishmaniasis. Parasite Immunology, 36, 253–265. IF-2.1
- Gupta R, Kumar V, Kushawaha PK, Tripathi CP, Joshi S, Sahasrabuddhe AA, Mitra K, Sundar S, Siddiqui I, Dube A (2014): Characterization of Glycolytic Enzymes - rAldolase and rEnolase of Leishmania donovani, Identified as Th1 Stimulatory Proteins, for Their Immunogenicity and Immunoprophylactic Efficacies against Experimental Visceral Leishmaniasis. PLoS One, 9(1): e86073. IF-3.1
- Gupta R, Kushawaha PK, Tripathi CD, Sundar S, Dube A (2012): A novel recombinant Leishmania donovani p45-a partial coding region of methionine aminopeptidase protein generates protective immunity by inducing Th1 stimulatory response against experimental visceral Leishmaniasis. International Journal of Parasitology, May 1;42(5):429-35. IF-3.7
- Gupta R *, Kushawaha PK *, Samant M, Jaiswal AK, Baharia AK, Dube A (2012). Treatment of Leishmania donovani- infected hamsters with miltefosine: analysis of cytokine mRNA expression by real- time PCR, lymphoproliferation, nitrite production and antibody response. J Antimicrob Chemother. 2012 Feb;67(2):440-3. * Equally contributed. IF-5.2
- Kushawaha PK, Gupta R, Tripathi CD, Khare P, Jaiswal AK,Sundar S, Dube A (2012): Leishmania donovani Triose Phosphate Isomerase: a potential vaccine target against Visceral Leishmaniasis. PLoS One, Volume 7 | Issue 9 | e45766. IF-3.1
- Kushawaha PK, Gupta R, Tripathi CD, Sundar S, Dube A (2012): Evaluation of Leishmania donovani Protein disulfide isomerase as a potential immunogenic protein / vaccine candidate against visceral leishmaniasis. PLoS One, Volume 7/Issue 4/ e356770. IF-3.1
- Kushawaha PK, Gupta R, Sundar S, Sahasrabuddhe AA and Dube A (2011). Elongation Factor-2- a Th1 stimulatory protein of Leishmania donovani generates strong IFN-γ and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. J Immunol, 187: 6417–6427. IF-5.4
- Samant M, Gupta R, Kumari S, Misra P, Khare P, Kushawaha PK, Sahashrabuddhe AA, Dube A (2009). Immunization with the DNA Encoding N-terminal domain of Proteophosphoglycan (PPG) of Leishmania donovani generates Th-1 type immuno-protective response against Experimental Visceral Leishmaniasis. J Immunol Jul 1; 183(1):470-9. IF-5.4
- Misra P, Khaliq T, Dixit A, SenGupta S, Samant M, Kumari S, Kumar A, Kushawaha PK, Majumder HK, Saxena AK, Narender T, Dube A (2008). Antileishmanial activity mediated by apoptosis and structure – based target study of Peganine hydrochloride, an approach for rational drug design. J Antimicrob chemother. Nov, 62 (5):998-1002. IF-5.2
|